Provable Security against Side-Channel Attacks

Matthieu Rivain matthieu.rivain@cryptoexperts.com

MCrypt Seminar - Aug. 11th 2014

1 Introduction

2 Modeling side-channel leakage

3 Achieving provable security against SCA

1 Introduction

2 Modeling side-channel leakage
3 Achieving provable security against SCA

Sound and temperature

- Proofs of concept in idealized conditions
- Minor practical threats on embedded systems

Running time

- Trivial solution: constant-time implementations
- Must be carefully addressed
 - timing flaw still discovered in OpenSSL in 2011!
 - timing flaws can be induced by the processor (cache, branch prediction, ...)

Power consumption and EM emanations

- Close by nature (switching activity)
- Can be modeled as weighted sums of the transitions
- EM can be more informative (placing of the probe) but assume a raw access to the circuit
- Both are noisy *i.e.* non-deterministic
- Noise amplification by generating random switching activity

Power consumption and EM emanations

- Close by nature (switching activity)
- Can be modeled as weighted sums of the transitions
- EM can be more informative (placing of the probe) but assume a raw access to the circuit
- Both are noisy *i.e.* non-deterministic
- Noise amplification by generating random switching activity

<u>This talk</u>: leakage = power consuption + EM emanations

Traditional approach

- define an adversarial model (e.g. chosen plaintext attacker)
- define a security goal (*e.g.* distinguish two ciphertexts)

Traditional approach

- define an adversarial model (e.g. chosen plaintext attacker)
- define a security goal (e.g. distinguish two ciphertexts)

Traditional approach

- define an adversarial model (e.g. chosen plaintext attacker)
- define a security goal (e.g. distinguish two ciphertexts)

Security reduction: If A exists with non-negligible $|\Pr[\hat{b} = b] - 1/2|$ then I can use A to efficiently solve a hard problem.

... in the presence of leakage

... in the presence of leakage

... in the presence of leakage

... in the presence of leakage

Issue: how to model the leakage?

1 Introduction

2 Modeling side-channel leakage

3 Achieving provable security against SCA

The encryption oracle *cannot* be seen as a mathematical function $E(k, \cdot): m \mapsto c$ anymore, but as a computation.

- Two classical approaches to model computation:
 - Turing machines (programs)
 - Circuits
- How to model *leaking* computation?

Chronology

- Probing model (circuits, 2003)
- Physically observable cryptography (Turing machines, 2004)
- Leakage resilient cryptography (2008)
- Further leakage models for circuits (2010)
- Noisy leakage model (2013)

Presentation

- Leakage models for circuits
- Leakage models for programs

Chronology

- Probing model (circuits, 2003)
- Physically observable cryptography (Turing machines, 2004)
- Leakage resilient cryptography (2008)
- Further leakage models for circuits (2010)
- Noisy leakage model (2013)

Presentation

- Leakage models for circuits
- Leakage models for programs

Chronology

- Probing model (circuits, 2003)
- Physically observable cryptography (Turing machines, 2004)
- Leakage resilient cryptography (2008)
- Further leakage models for circuits (2010)
- Noisy leakage model (2013)

Presentation

- Leakage models for circuits
- Leakage models for programs

- [Ishai-Sahai-Wagner. CRYPTO 2003]
- Directed graph whose nodes are *gates* and edges are *wires*

- [Ishai-Sahai-Wagner. CRYPTO 2003]
- Directed graph whose nodes are *gates* and edges are *wires*

• At each cycles, the circuit leaks $f(w_1, w_2, \ldots, w_n)$

- Probing security model [Ishai-Sahai-Wagner. CRYPTO 2003]
 - \blacktriangleright the adversary gets $(w_i)_{i\in\mathcal{I}}$ for some chosen set $|\mathcal{I}|\leq t$
- \mathcal{AC}_0 leakage model [Faust et al. EUROCRYPT 2010]
 - \blacktriangleright the leakage function f belongs to the \mathcal{AC}_0 complexity class
 - \blacktriangleright *i.e.* f is computable by circuits of constant depth d

Noisy circuit-leakage model [Faust et al. EUROCRYPT 2010]

►
$$f: (w_1, w_2, ..., w_n) \mapsto (w_1 \oplus \varepsilon_1, w_2 \oplus \varepsilon_2, ..., w_n \oplus \varepsilon_n)$$

with $\varepsilon_i = \begin{cases} 1 \text{ with proba } p < 1/2 \\ 0 \text{ with proba } 1 - p \end{cases}$

- Probing security model [Ishai-Sahai-Wagner. CRYPTO 2003]
 - \blacktriangleright the adversary gets $(w_i)_{i\in\mathcal{I}}$ for some chosen set $|\mathcal{I}|\leq t$
- \mathcal{AC}_0 leakage model [Faust et al. EUROCRYPT 2010]
 - \blacktriangleright the leakage function f belongs to the \mathcal{AC}_0 complexity class
 - \blacktriangleright *i.e.* f is computable by circuits of constant depth d

Noisy circuit-leakage model [Faust et al. EUROCRYPT 2010]

►
$$f: (w_1, w_2, ..., w_n) \mapsto (w_1 \oplus \varepsilon_1, w_2 \oplus \varepsilon_2, ..., w_n \oplus \varepsilon_n)$$

with $\varepsilon_i = \begin{cases} 1 \text{ with proba } p < 1/2 \\ 0 \text{ with proba } 1 - p \end{cases}$

These models fail in capturing EM and PC leakages!

- Probing security model [Ishai-Sahai-Wagner. CRYPTO 2003]
 - \blacktriangleright the adversary gets $(w_i)_{i\in\mathcal{I}}$ for some chosen set $|\mathcal{I}|\leq t$
- \mathcal{AC}_0 leakage model [Faust et al. EUROCRYPT 2010]
 - \blacktriangleright the leakage function f belongs to the \mathcal{AC}_0 complexity class
 - \blacktriangleright *i.e.* f is computable by circuits of constant depth d
- Noisy circuit-leakage model [Faust et al. EUROCRYPT 2010]

►
$$f: (w_1, w_2, ..., w_n) \mapsto (w_1 \oplus \varepsilon_1, w_2 \oplus \varepsilon_2, ..., w_n \oplus \varepsilon_n)$$

with $\varepsilon_i = \begin{cases} 1 \text{ with proba } p < 1/2 \\ 0 \text{ with proba } 1 - p \end{cases}$

- These models fail in capturing EM and PC leakages!
- Circuits not convenient to model software implementations (or algorithms / protocols)

Physically Observable Cryptography

- [Micali-Reyzin. TCC'04]
- Framework for leaking computation
- Strong formalism using Turing machines
- Assumption: Only Computation Leaks (OCL)
- \blacksquare Computation divided into subcomputations $y \leftarrow \mathsf{SC}(x)$
- Each SC accesses a part of the state x and leaks f(x)
- f adaptively chosen by the adversary
- No actual proposal for f

Leakage Resilient Cryptography

- Model introduced in [Dziembowski-Pietrzak. STOC'08]
- Specialization of the Micali-Reyzin framework
- Leakage functions follow the *bounded retrieval model* [Crescenzo et al. TCC'06]

$$f: \{0,1\}^n \to \{0,1\}^\lambda \qquad \text{ for some constant } \lambda < n$$

Leakage Resilient Cryptography

Example: LR stream cipher [Pietrzak. EUROCRYPT'09]

- Many further LR crypto primitives published so far
- Generic LR compilers
 - ▶ [Goldwasser-Rothblum. FOCS'12]
 - [Dziembowski-Faust. TCC'12]

Leakage Resilient Cryptography

- Limitation: the leakage of a subcomputation is limited to λ-bit values for λ < n (the input size)
- Side-channel leakage far bigger than n bits
 - \blacktriangleright although it may not remove all the entropy of x

Figure: Power consumption of a DES computation.

Noisy Leakage Model

- [Prouff-Rivain. EUROCRYPT 2013]
- OCL assumption (Micali-Reyzin framework)
- New class of noisy leakage functions
- An observation f(x) introduces a *bounded bias* in Pr[x]
 - very generic

Notion of bias

Bias of
$$X$$
 given $Y=y$:
$$\beta(X|Y=y) = \|\Pr[X] - \Pr[X|Y=y]\|$$

with $\|\cdot\| = \text{Euclidean norm.}$

Bias of
$$X$$
 given Y :
$$\beta(X|Y) = \sum_{y \in \mathcal{Y}} \Pr[Y = y] \ \beta(X|Y = y) \ .$$

• $\beta(X|Y) \in \left[0; \sqrt{1 - \frac{1}{|\mathcal{X}|}}\right]$ (indep. / deterministic relation)

Related to MI by:

$$\frac{1}{\ln 2}\beta(X|Y) \le \operatorname{MI}(X;Y) \le \frac{|\mathcal{X}|}{\ln 2}\beta(X|Y)$$

Noisy Leakage Model

Every subcomputation leaks a *noisy function* f of its input
 noise modeled by a fresh random tape argument

• ψ is some *noise parameter*

•
$$f \in \mathcal{N}(1/\psi) \Rightarrow \beta(X|f(X)) < \frac{1}{\psi}$$

Capture any form of noisy leakage

Noisy Leakage Model

In practice, the multivariate Gaussian model is widely admitted

$$f(x) \sim \mathcal{N}(\vec{m}_x, \Sigma) \qquad \forall x \in \mathcal{X}$$

• The bias can be efficiently computed:

$$\begin{split} \beta(X|f(X)) &= \sum_{\vec{y}} \mathsf{p}_{\vec{y}} \left(\sum_{x} \left(\mathsf{p}_{x|\vec{y}} - 1/|\mathcal{X}| \right)^2 \right)^{1/2} \\ \text{with} \quad \mathsf{p}_{\vec{y}} &= \sum_{x} \frac{\phi_{\Sigma}(\vec{y} - \vec{m}_x)}{\sum_{\vec{z}} \phi_{\Sigma}(\vec{z} - \vec{m}_x)} \quad \text{and} \quad \mathsf{p}_{x|\vec{y}} = \frac{\phi_{\Sigma}(\vec{y} - \vec{m}_x)}{\sum_{v} \phi_{\Sigma}(\vec{y} - \vec{m}_v)} \\ \text{where} \quad \phi_{\Sigma} : \vec{y} \mapsto \exp\left(-\frac{1}{2} \, \vec{y} \cdot \Sigma \cdot \vec{y} \, \right). \end{split}$$

Noisy Leakage Model

Illustration: univariate Hamming weight model with Gaussian noise

Noisy Leakage Model

Illustration: univariate Hamming weight model with Gaussian noise

1 Introduction

2 Modeling side-channel leakage

3 Achieving provable security against SCA

Achieving provable security against SCA

- Describe a (protected) implementation of $E(k, \cdot)$
- Model the leakage
- Provide a security reduction

Achieving provable security against SCA

- Describe a (protected) implementation of $E(k, \cdot)$
- Model the leakage
- Provide a security reduction
- What about generic security against SCA?
 - ▶ for any cryptosystem, security goal, adversarial model

• Security: $\forall \text{Dist} : \text{Adv}(\text{Dist}^{\mathcal{O}(\cdot)}) \leq 2^{-\kappa}$

• Security: $\forall \text{Dist} : \text{Adv}(\text{Dist}^{\mathcal{O}(\cdot)}) \leq 2^{-\kappa}$

• Security: $\forall \mathsf{Dist}: \mathsf{Adv}(\mathsf{Dist}^{\mathcal{O}(\cdot)}) \leq 2^{-\kappa}$

$$\Rightarrow \forall \mathcal{A}: \mathsf{Adv}(\mathcal{A}\mathsf{-}\mathsf{SG}^{\mathcal{O}(\cdot)}) \approx \mathsf{Adv}(\mathcal{A}\mathsf{-}\mathsf{SG}^{\mathcal{O}^{\$}(\cdot)})$$

- $\ \ \, \underline{\mathsf{Security:}} \ \, \forall \mathsf{Dist}: \ \, \mathsf{Adv}(\mathsf{Dist}^{\mathcal{O}(\cdot)}) \leq 2^{-\kappa} \\$
 - $\Rightarrow \forall \mathcal{A}: \ \mathsf{Adv}(\mathcal{A}\text{-}\mathsf{SG}^{\mathcal{O}(\cdot)}) \approx \mathsf{Adv}(\mathcal{A}\text{-}\mathsf{SG}^{\mathcal{O}^{\$}(\cdot)})$
- Information theoretic security: $\mathrm{MI}((m,k);\ell(m,k)) \leq 2^{-\kappa}$

 $\ \ \, \underline{\mathsf{Security:}} \ \, \forall \mathsf{Dist}: \ \, \mathsf{Adv}(\mathsf{Dist}^{\mathcal{O}(\cdot)}) \leq 2^{-\kappa} \\$

 $\Rightarrow \forall \mathcal{A}: \ \mathsf{Adv}(\mathcal{A}\text{-}\mathsf{SG}^{\mathcal{O}(\cdot)}) \approx \mathsf{Adv}(\mathcal{A}\text{-}\mathsf{SG}^{\mathcal{O}^{\$}(\cdot)})$

Information theoretic security: $\mathrm{MI}((m,k);\ell(m,k)) \leq 2^{-\kappa}$

IT Security \Rightarrow Security

Using random sharing

Principle

- Randomly share the internal state of the computation
- A *d*-sharing of $x \in \mathbb{F}$ is a tuple (x_1, x_2, \ldots, x_n) s.t.

 $x_1 + x_2 + \dots + x_n = x$

with n-1 degrees of randomness

 \blacksquare Subcomputations $y \leftarrow \mathsf{SC}(x)$ are replaced by

$$(y_1, y_2, \ldots, y_n) \leftarrow \mathsf{SC}'(x_1, x_2, \ldots, x_n)$$

Using random sharing

Soundness

- [Chari et al. CRYPTO'99]
- Univariate Gaussian leakage model: $\ell_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
- Distinguishing $((\ell_i)_i | x = 0)$ from $((\ell_i)_i | x = 1)$ takes q samples:

$$q \ge cst \cdot \sigma^n$$

- Limitations:
 - univariate leakage model, Gaussian noise assumption
 - static leakage of the shares (*i.e.* without computation)
 - ▶ no scheme proposed to securely compute on a shared state

- [Ishai-Sahai-Wagner. CRYPTO 2003]
- Binary circuit model
- Goal: security against *t*-probing attacks
- Every wire w is shared in n wires w_1, w_2, \ldots, w_n
- Issue: how to encode logic gates?
 - NOT gates and AND gates
- NOT gates encoding:

$$\overline{w} = \overline{w_1} \oplus w_2 \dots \oplus w_n$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

• Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = a \cdot b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

• Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = a \cdot b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ 0 & a_2b_2 & a_2b_3 \\ 0 & 0 & a_3b_3 \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 & 0 \\ a_2b_1 & 0 & 0 \\ a_3b_1 & a_3b_2 & 0 \end{pmatrix}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

• Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = a \cdot b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ 0 & a_2b_2 & a_2b_3 \\ 0 & 0 & a_3b_3 \end{pmatrix} \oplus \begin{pmatrix} 0 & a_2b_1 & a_3b_1 \\ 0 & 0 & a_3b_2 \\ 0 & 0 & 0 \end{pmatrix}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

• Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = a \cdot b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

$$\begin{pmatrix} a_1b_1 & a_1b_2 \oplus a_2b_1 & a_1b_3 \oplus a_3b_1 \\ 0 & a_2b_2 & a_2b_3 \oplus a_3b_2 \\ 0 & 0 & a_3b_3 \end{pmatrix}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

• Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = a \cdot b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

(a_1b_1)	$a_1b_2\oplus a_2b_1$	$a_1b_3\oplus a_3b_1$
0	a_2b_2	$a_2b_3\oplus a_3b_2$
0	0	a_3b_3 /

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

$$\begin{pmatrix} a_1b_1 & a_1b_2 \oplus a_2b_1 & a_1b_3 \oplus a_3b_1 \\ 0 & a_2b_2 & a_2b_3 \oplus a_3b_2 \\ 0 & 0 & a_3b_3 \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{1,2} & r_{1,3} \\ 0 & 0 & r_{2,3} \\ 0 & 0 & 0 \end{pmatrix}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

• Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = a \cdot b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Example (n = 3):

 $\begin{pmatrix} a_1b_1 & a_1b_2 \oplus a_2b_1 & a_1b_3 \oplus a_3b_1 \\ 0 & a_2b_2 & a_2b_3 \oplus a_3b_2 \\ 0 & 0 & a_3b_3 \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{pmatrix}$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

• Output: $(c_i)_i$ s.t. $\bigoplus_i c_i = a \cdot b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Example (n = 3):

 $\begin{pmatrix} a_1b_1 & (a_1b_2 \oplus r_{1,2}) \oplus a_2b_1 & (a_1b_3 \oplus r_{1,3}) \oplus a_3b_1 \\ r_{1,2} & a_2b_2 & (a_2b_3 \oplus r_{2,3}) \oplus a_3b_2 \\ r_{1,3} & r_{2,3} & a_3b_3 \end{pmatrix}$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Example
$$(n = 3)$$
:

$$\begin{pmatrix} a_1b_1 & (a_1b_2 \oplus r_{1,2}) \oplus a_2b_1 & (a_1b_3 \oplus r_{1,3}) \oplus a_3b_1 \\ r_{1,2} & a_2b_2 & (a_2b_3 \oplus r_{2,3}) \oplus a_3b_2 \\ r_{1,3} & r_{2,3} & a_3b_3 \end{pmatrix}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Example
$$(n = 3)$$
:

$$\begin{pmatrix} a_1b_1 & (a_1b_2 \oplus r_{1,2}) \oplus a_2b_1 & (a_1b_3 \oplus r_{1,3}) \oplus a_3b_1 \\ r_{1,2} & a_2b_2 & (a_2b_3 \oplus r_{2,3}) \oplus a_3b_2 \\ r_{1,3} & r_{2,3} & a_3b_3 \end{pmatrix}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Example
$$(n = 3)$$
:

$\left(a_1b_1\right)$	$(a_1b_2\oplus r_{1,2})\oplus a_2b_1$	$(a_1b_3\oplus r_{1,3})\oplus a_3b_1$
$r_{1,2}$	a_2b_2	$(a_2b_3\oplus r_{2,3})\oplus a_3b_2$
$\langle r_{1,3} \rangle$	$r_{2,3}$	a_3b_3 /
c_1	c_2	

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a_i$, $\bigoplus_i b_i = b_i$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Example
$$(n = 3)$$
:

$$\begin{pmatrix} a_1b_1 & (a_1b_2 \oplus r_{1,2}) \oplus a_2b_1 & (a_1b_3 \oplus r_{1,3}) \oplus a_3b_1 \\ r_{1,2} & a_2b_2 & (a_2b_3 \oplus r_{2,3}) \oplus a_3b_2 \\ r_{1,3} & r_{2,3} & a_3b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

AND gates encoding

• Input: $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$

$$a \cdot b = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

• Example
$$(n = 3)$$
:

$$\begin{pmatrix} a_1b_1 & (a_1b_2 \oplus r_{1,2}) \oplus a_2b_1 & (a_1b_3 \oplus r_{1,3}) \oplus a_3b_1 \\ r_{1,2} & a_2b_2 & (a_2b_3 \oplus r_{2,3}) \oplus a_3b_2 \\ r_{1,3} & r_{2,3} & a_3b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

Sketch of security proof

- *t*-probing adversary $\Rightarrow n = 2t + 1$ shares
- probed wires: v_1, v_2, \ldots, v_t
- construct a set $I = \{ raw and column indices of <math>v_k \}$
- (v_1, v_2, \dots, v_t) perfectly simulated from $(a_i)_{i \in I}$ and $(b_i)_{i \in I}$
- $|I| \leq 2t < n \Rightarrow (a_i)_{i \in I}$ and $(b_i)_{i \in I}$ are random |I|-tuples

Figure: AND gate for n = 3

Can be transposed to the *d*th-order security model

- ► the adversary must combined the leakage of at least *d* subcomputations to recover information
- ▶ in presence of noise d is a relevant security parameter [Chari et al. CRYPTO'99]
- Many dth-order secure schemes based on ISW scheme
- Not fully satisfactory
 - ▶ an relevant adversary should use all the leakage

Security in the noisy model

- [Prouff-Rivain. EUROCRYPT 2013]
- Every $y \leftarrow \mathsf{SC}(x)$ leaks f(x) where $\beta(X|f(X)) < \frac{1}{\psi}$
- Information theoretic security proof: $\mathrm{MI}\big((m,k);\ell(m,k)) < O(\omega^{-d})$
- Assumtpion: the noise parameter ψ can be linearly increased
- Need of a *leak-free component* for refreshing

$$\underbrace{\mathbf{x} = (x_0, x_1, \dots, x_d)}_{\bigoplus_i x_i = x} \quad \longmapsto \quad \underbrace{\mathbf{x}' = (x'_0, x'_1, \dots, x'_d)}_{\bigoplus_i x'_i = x}$$

with $(\boldsymbol{x} \mid x)$ and $(\boldsymbol{x}' \mid x)$ mutually independent.

Overview of the proof

Consider a SPN computation

Figure: Example of SPN round.

Overview of the proof

Classical implementation protected with sharing

Figure: Example of SPN round protected with sharing.

S-Box computation

[Carlet et al. FSE'12]

- Polynomial evaluation over $GF(2^n)$
- Two types of elementary calculations:
 - linear functions (additions, squares, multiplication by coefficients)
 - multiplications over $GF(2^n)$

Linear functions

• Given a sharing $X = X_0 \oplus X_1 \oplus \cdots \oplus X_d$

Linear functions

• Given a sharing $X = X_0 \oplus X_1 \oplus \cdots \oplus X_d$

Linear functions

• Given a sharing $X = X_0 \oplus X_1 \oplus \cdots \oplus X_d$

For
$$f_i \in \mathcal{N}(1/\psi)$$
 with $\psi = O(|\mathcal{X}|^{\frac{1}{2}} \omega)$, we show
 $\operatorname{MI}(X; (f_0(X_0), f_1(X_1), \dots, f_d(X_d))) \leq \frac{1}{\omega^{d+1}}$

- Inputs: sharings $\bigoplus_i A_i = g(X)$ and $\bigoplus_i B_i = g(X)$ where X = s-box input
- First step: cross-products

- Inputs: sharings $\bigoplus_i A_i = g(X)$ and $\bigoplus_i B_i = g(X)$ where X = s-box input
- First step: cross-products

- Inputs: sharings $\bigoplus_i A_i = g(X)$ and $\bigoplus_i B_i = g(X)$ where X = s-box input
- First step: cross-products

 $\begin{array}{ccccccccc} A_0 \times B_0 & A_0 \times B_1 & \cdots & A_0 \times B_d \\ A_1 \times B_0 & A_1 \times B_1 & \cdots & A_1 \times B_d \\ \vdots & \vdots & \ddots & \vdots \\ A_d \times B_0 & A_d \times B_1 & \cdots & A_d \times B_d \end{array}$

• For $f_{i,j} \in \mathcal{N}(1/\psi)$ with $\psi = O(|\mathcal{X}|^{\frac{3}{2}}d\omega)$ we show $\operatorname{MI}(X; (f_{i,j}(A_i, B_j))_{i,j}) \leq \frac{1}{\omega^{d+1}}$

- Second step: refreshing
- Apply on each column and one row of

$A_0 \times B_0$	$A_0 \times B_1$		$A_0 \times B_d$
$A_1 \times B_0$	$A_1 \times B_1$	•••	$A_1 \times B_d$
:	÷	·	÷
$A_d \times B_0$	$A_d \times B_1$		$A_d \times B_d$

- We get a fresh $(d+1)^2$ -sharing of $A \times B$

- Third step: summing rows
- Takes *d* elementary calculations (XORs) per row:

$$\begin{split} T_{i,1} &\leftarrow V_{i,0} \oplus V_{i,1} \\ T_{i,2} &\leftarrow T_{i,1} \oplus V_{i,2} \\ &\vdots \\ T_{i,d} &\leftarrow T_{i,d-1} \oplus V_{i,d} \end{split}$$

- Third step: summing rows
- Takes *d* elementary calculations (XORs) per row:

$$\begin{array}{c} T_{i,1} \leftarrow V_{i,0} \oplus V_{i,1} \\ T_{i,2} \leftarrow T_{i,1} \oplus V_{i,2} \\ \vdots \\ T_{i,d} \leftarrow T_{i,d-1} \oplus V_{i,d} \end{array} \xrightarrow{f_{i,1}(V_{i,0}, V_{i,1})} f_{i,2}(T_{i,1}, V_{i,2}) \\ f_{i,d}(T_{i,d-1}, V_{i,d}) \end{array}$$

- Third step: summing rows
- Takes *d* elementary calculations (XORs) per row:

$$\begin{array}{c} T_{i,1} \leftarrow V_{i,0} \oplus V_{i,1} \\ T_{i,2} \leftarrow T_{i,1} \oplus V_{i,2} \\ \vdots \\ T_{i,d} \leftarrow T_{i,d-1} \oplus V_{i,d} \end{array} \xrightarrow{f_{i,1}(V_{i,0}, V_{i,1})}_{f_{i,2}(T_{i,1}, V_{i,2})} \\ f_{i,d}(T_{i,d-1}, V_{i,d}) \end{array}$$

• For $f_{i,j} \in \mathcal{N}(1/\psi)$ with $\psi = O(|\mathcal{X}|^{\frac{3}{2}}\omega)$, we show $\operatorname{MI}(X; (F_0, F_1, \dots, F_d)) \leq \frac{1}{\omega^{d+1}}$ where $F_i = (f_{i,1}(V_{i,0}, V_{i,1}), f_{i,2}(T_{i,1}, V_{i,2}), \dots, f_{i,d}(T_{i,d-1}, V_{i,d}))$

Putting everything together

• Several sequences of subcomputations, each leaking L_t with

$$\mathrm{MI}((m,k);L_t) \le \frac{1}{\omega^{d+1}}$$

Use of share-refreshing between each sequence

• $(L_t)_t$ are mutually independent given (m, k)

We hence have

$$\operatorname{MI}((m,k); (L_1, L_2, \dots, L_T)) \le \sum_{t=1}^T \operatorname{MI}((m,k); L_t) \le \frac{T}{\omega^{d+1}}$$

Improved security proof

- [Duc-Dziembowski-Faust. EUROCRYPT 2014]
- Security reduction: probing model \Rightarrow noisy model
- ISW scheme secure in the noisy model
- No need for leak-free component !

Improved security proof

- Consider $y_1 \leftarrow \mathsf{SC}_1(x_1), y_2 \leftarrow \mathsf{SC}_2(x_2), \ldots, y_n \leftarrow \mathsf{SC}_n(x_n)$
- $t\text{-probing model: } \ell = (x_i)_{i \in I} \text{ with } |I| = t$
- ε -random probing model: $\ell = (\varphi_1(x_1), \varphi_2(x_2), \dots, \varphi_n(x_n))$
 - where φ_i is a ε -identity function i.e.

with
$$\varphi_i(x) = \begin{cases} x \text{ with proba } \varepsilon \\ \bot \text{ with proba } 1 - \varepsilon \end{cases}$$

• δ -noisy model: $\ell = (f_1(x_1), f_2(x_2), \dots, f_n(x_n))$ with $\beta(X|f_i(X)) \leq \delta$ (here $\|\cdot\| = L_1$)

Improved security proof

- Consider $y_1 \leftarrow \mathsf{SC}_1(x_1), y_2 \leftarrow \mathsf{SC}_2(x_2), \ldots, y_n \leftarrow \mathsf{SC}_n(x_n)$
- $t\text{-probing model: } \ell = (x_i)_{i \in I} \text{ with } |I| = t$
- ε -random probing model: $\ell = (\varphi_1(x_1), \varphi_2(x_2), \dots, \varphi_n(x_n))$
 - where φ_i is a ε -identity function i.e.

with
$$\varphi_i(x) = \begin{cases} x \text{ with proba } \varepsilon \\ \bot \text{ with proba } 1 - \varepsilon \end{cases}$$

•
$$\delta$$
-noisy model: $\ell = (f_1(x_1), f_2(x_2), \dots, f_n(x_n))$
with $\beta(X|f_i(X)) \le \delta$ (here $\|\cdot\| = L_1$)

 $t\text{-probing security} \Rightarrow \varepsilon\text{-random probing security} \Rightarrow \delta\text{-noisy security}$

From probing to random probing

- ε -random probing adv. $\mathcal{A}_{rp} \Rightarrow t$ -probing adv. \mathcal{A}_p • with $t = 2n\varepsilon - 1$
- \mathcal{A}_p works as follows
 - ▶ sample $(z_1, z_2, ..., z_n)$ where $z_i = \begin{cases} 1 \text{ with proba } \varepsilon \\ 0 \text{ with proba } 1 \varepsilon \end{cases}$
 - ▶ set $I = \{i \mid z_i = 1\}$, if |I| > t return ⊥
 - get $(x_i)_{i \in I}$
 - ▶ call \mathcal{A}_{rp} on (y_1, y_2, \dots, y_n) where $y_i = \begin{cases} x_i \text{ if } i \in I \\ \bot \text{ if } i \notin I \end{cases}$
- If $|I| \le t$: $(y_1, y_2, \dots, y_n) \sim (\varphi_1(x_1), \varphi_2(x_2), \dots, \varphi_n(x_n))$
- Chernoff bound: $\Pr[|I| > t] \le \exp(-t/6)$
- $\forall \mathcal{A}_{rp} \ \exists \mathcal{A}_p : \operatorname{Adv}(\mathcal{A}_p) \leq \operatorname{Adv}(\mathcal{A}_{rp}) \exp(-t/6)$

From probing to random probing

- ε -random probing adv. $\mathcal{A}_{rp} \Rightarrow t$ -probing adv. \mathcal{A}_p • with $t = 2n\varepsilon - 1$
- \mathcal{A}_p works as follows
 - ▶ sample $(z_1, z_2, ..., z_n)$ where $z_i = \begin{cases} 1 \text{ with proba } \varepsilon \\ 0 \text{ with proba } 1 \varepsilon \end{cases}$
 - ▶ set $I = \{i \mid z_i = 1\}$, if |I| > t return ⊥
 - ▶ get $(x_i)_{i \in I}$
 - ▶ call \mathcal{A}_{rp} on (y_1, y_2, \dots, y_n) where $y_i = \begin{cases} x_i \text{ if } i \in I \\ ⊥ \text{ if } i \notin I \end{cases}$
- If $|I| \le t$: $(y_1, y_2, \dots, y_n) \sim (\varphi_1(x_1), \varphi_2(x_2), \dots, \varphi_n(x_n))$
- Chernoff bound: $\Pr[|I| > t] \le \exp(-t/6)$
- $\forall \mathcal{A}_{rp} : \operatorname{Adv}(\mathcal{A}_{rp}) \leq \max_{\mathcal{A}_p} \operatorname{Adv}(\mathcal{A}_p) + \exp(-t/6)$

From random probing to noisy leakage

- Main lemma: every f s.t. $\beta(X|f(X)) \leq \delta$ can be written:

$$f = f' \circ \varphi$$

where φ is an $\varepsilon\text{-identity}$ function with $\varepsilon\leq \delta|\mathcal{X}|\text{, and}$

 $\left. \begin{array}{l} f \text{ efficient to sample} \\ \Pr[f(x) = y] \text{ eff. computable} \end{array} \right\} \Rightarrow f' \text{ efficient to sample} \end{array} \right\}$

• δ -noisy adversary $\mathcal{A}_n \Rightarrow \varepsilon$ -random probing adv. \mathcal{A}_{rp}

- get $(\varphi_1(x_1), \varphi_2(x_2), \dots, \varphi_n(x_n))$
- $\blacktriangleright \text{ call } \mathcal{A}_n \text{ on } (f_1' \circ \varphi_1(x_1), f_2' \circ \varphi_2(x_1), \dots, f_n' \circ \varphi_n(x_n))$

 $\forall \mathcal{A}_n \ \exists \mathcal{A}_{rp} : \ \mathsf{Adv}(\mathcal{A}_{rp}) = \mathsf{Adv}(\mathcal{A}_n)$

From random probing to noisy leakage

- Main lemma: every f s.t. $\beta(X|f(X)) \leq \delta$ can be written:

$$f = f' \circ \varphi$$

where φ is an ε -identity function with $\varepsilon \leq \delta |\mathcal{X}|$, and

 $\left. \begin{array}{l} f \text{ efficient to sample} \\ \Pr[f(x) = y] \text{ eff. computable} \end{array} \right\} \Rightarrow f' \text{ efficient to sample} \end{array} \right\}$

• δ -noisy adversary $\mathcal{A}_n \Rightarrow \varepsilon$ -random probing adv. \mathcal{A}_{rp}

- get $(\varphi_1(x_1), \varphi_2(x_2), \dots, \varphi_n(x_n))$
- $\blacktriangleright \text{ call } \mathcal{A}_n \text{ on } (f_1' \circ \varphi_1(x_1), f_2' \circ \varphi_2(x_1), \dots, f_n' \circ \varphi_n(x_n))$

$$\forall \mathcal{A}_n : \operatorname{Adv}(\mathcal{A}_n) \leq \max_{\mathcal{A}_{rp}} \operatorname{Adv}(\mathcal{A}_{rp})$$

Combining both reductions

• Security against t-probing \Rightarrow security against $\delta\text{-noisy}$ where $\delta=\frac{t+1}{2n|\mathcal{X}|}$

• $\exp(-t/6)$ must be negligible $\Rightarrow t \ge 8.65 \kappa$

- ISW scheme with d-sharing is secure against $\delta\text{-noisy}$ attackers

where
$$\delta = \frac{d}{n|\mathcal{X}|}$$
 (and $d \ge 17.5 \kappa$)

• For ISW-multiplication $n = O(d^2)$ and $\mathcal{X} = \mathbb{F} \times \mathbb{F}$ giving $\delta = O(1/d|\mathbb{F}|^2) \Rightarrow \psi = O(d|\mathbb{F}|^2)$

• Limitation: ψ is still in O(d)

Conclusion

- New practically relevant model for leaking computation: the noisy model
- Need for practical investigations for the bias estimation
- Only 2 works proposing formal proofs in this model
- Open issues:
 - ▶ a scheme secure with constant noise
 - secure implementations with different kind of randomization (*e.g.* exponent/message blinding for RSA/ECC)

