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Advanced (Univ.) Attacks Introduction in the context of AES

Advanced Side Channel Attacks (DPA like attacks)
Introduction

Advanced Side Channel Attacks can extract information from
observations in contexts where SPA fails.

They involve statistical tools (simple – difference of means
tests – or sophisticated – mutual information processing –).

They need several (between 10 and more than 106) traces
such that:

the secret is constant,
the inputs are different and [optional] known.
[optional] some knowledge about the device architecture, the
implementation or the noise characteristics.

They follow a divide-and-conquer approach: the secret is
rebuild piece by piece, where each piece is deduced from the
behavior of an intermediate result. The size of the piece
usually depends on the architecture size (e.g. 8, 16 or 32 bits).
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Advanced Side Channel Attacks (DPA like attacks)
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Advanced Side Channel Attacks (DPA like attacks)
AES Round - Software Implementation – SCA attack
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Advanced (Univ.) Attacks Introduction in the context of AES

Advanced Side Channel Attacks (DPA like attacks)
Main Observation

Leakage at time t depends on the data manipulated at this time.

1 Power consumption leakage during the manipulation of a 8-bit
variable by a card [Kocher, Jaffe and Jun, CRYPTO 1999].

2 Electromagnetic emanation during the same manipulation
[Quisquater and Samyde, ESmart 2001].

Note 1: traces repartition does not look random.
Note 2: power consumptions are always positive whereas electromagnetic
emanations are signed.
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Advanced Side Channel Attacks (DPA like attacks)
Main Observation

Example: pdf of the leakage for a device processing...

... AES-Sbox(X + K) with K = 1.

X varies uniformly
For each time (abs.) and each
value ` in a finite interval (ord.)
we plotted in z-axis:

Pr [leakage = `] ∼ pdf leakage(`)
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Advanced Side Channel Attacks (DPA like attacks)
Main Observation

Example: pdf of the leakage for a device processing...

... AES-Sbox(X + K) with K = 2.

M varies uniformly
For each time (abs.) and each
value ` in a finite interval (ord.)
we plotted in z-axis:

Pr [leakage = `] ∼ pdf leakage(`)
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Advanced Side Channel Attacks (DPA like attacks)
Main Observation

Example: pdf of the leakage for a device processing...

... AES-Sbox(X + K) with K = 3.

M varies uniformly
For each time (abs.) and each
value ` in a finite interval (ord.)
we plotted in z-axis:

Pr [leakage = `] ∼ pdf leakage(`)
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Advanced Side Channel Attacks (DPA like attacks)
Main Observation

Example: pdf of the leakage for a device processing...

... AES-Sbox(X + K) with K = 4.

M varies uniformly
For each time (abs.) and each
value ` in a finite interval (ord.)
we plotted in z-axis:

Pr [leakage = `] ∼ pdf leakage(`)
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Advanced (Univ.) Attacks Attacks Description (Univ. Case)

[Pre-computation] For every possible key k? pre-compute the
pdf of the leakage L.

k? = 4k? = 1 k? = 2 k? = 3

[Necessary Condition] Have an open access to a copy of the
target device and be able to choose the key value.

[Measurement] Measure the consumption for the target device
and estimate the pdf of L for this target.

k? = ?

[Key-recovery] Compare the pdf estimation with those
pre-computed and output the most likely key candidate.
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Advanced (Univ.) Attacks Attacks Description (Univ. Case)

Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: General Framework.

Secrets

Implementation

Optionnal

Statistical Tools

AES

Channel

Side Channel
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Chip Model
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Advanced (Univ.) Attacks Attacks Description (Univ. Case)

Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: General Framework (Theoretical)

Context: attack during the manipulation of Z = S(X + k).

1 Measurement :
get a leakages sample (`k,i )i related to a sample (xi )i of plaintexts.

2 Model Selection :
Design/Select a function m(·).

3 Prediction :
For every k̂, compute mk̂,i = m(S(xi + k̂)).

4 Distinguisher Selection :
Choose a statistical distinguisher ∆.

5 Key Discrimination :
For every k̂, compute the distinguishing value ∆k̂ :

∆k̂ = ∆
(

(`k,i )i , (mk̂,i )i

)
.

6 Key Candidate Selection :
Deduce k̂ from all the values ∆k̂ .
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Advanced (Univ.) Attacks Attacks Description (Univ. Case)

Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: attack Description Sheet/Form

Attack Description Sheet/Form

Type of Leakage: e.g. power consumption or electromagnetic emanation

Model Function:e.g. one bit of Z or its Hamming weight

Statistical Distinguisher: e.g. difference of means, correlation or entropy

Key Candidate Selection: e.g. the candidate the maximizes the scores
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: General Framework (Theoretical)

Context: attack during the manipulation of S(X + k).

1 Measurement :
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2 Model Selection :
Design/Select a function m(·).

3 Prediction :
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∆k̂ = ∆
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6 Key Candidate Selection :
Deduce k̂ from all the values ∆k̂ .
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Advanced (Univ.) Attacks Modeling

Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: define a model for the consumption.

Goal: define the kind of dependency between the manipulated data
and the device behaviour.

First solution (template/profiled attacks

principle):

use an exact copy of the attacked device
and estimate the pdf of L for every
possible pair (X , k).
see [Chari et al at CHES 2002].

Second solution (unprofiled attacks principle):

model the function E[L| X = x ,K = k].
see Messerges PhD Thesis.
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Advanced (Univ.) Attacks Modeling

Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: modelling for unprofiled attacks.

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals
Y + B, where Y is a function of Z and B is independent of Z .

B is usually called the noise and is viewed as a continuous
random variable.

We usually assume B ∼ N (0, σ2). (Gaussian Noise
Assumption).
Usually, we have Z = S(X + K ) where

X is known,
k is the secret to recover
S(·) is a known cryptographic primitive (e.g. an s-box).

New problem statement

Modelling = recover the function ϕ s.t. Y = ϕ(Z ).
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: modelling for unprofiled attacks.

z1 z2 z3 z4 z5 z6 z7 z8

register

circuit

? ? ? ? ? ? ??

Z = S(X + k) Assumption
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: modelling for unprofiled attacks.

z1 z2 z3 z4 z5 z6 z7 z8

register

circuit

Z = S(X + k) Assumption

0 0 0 0 0 0 0 0 0 Precharge
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: modelling for unprofiled attacks.

z1 z2 z3 z4 z5 z6 z7 z8

z1 z2 z3 z4 z5 z6 z7 z8
0 Prechargeregister

circuit

? ? ? ? ? ? ??

Z = S(X + k)

ε8ε1 ε2 ε3 ε4 ε5 ε6 ε7energy

Assumption

Linear Regression

the εi ’s are indep.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: modelling for unprofiled attacks.

z1 z2 z3 z4 z5 z6 z7 z8

z1 z2 z3 z4 z5 z6 z7 z8
0 Prechargeregister

circuit

? ? ? ? ? ? ??

Z = S(X + k)

ε8ε1 ε2 ε3 ε4 ε5 ε6 ε7energy

Assumption

Linear Regression

the εi ’s are indep.

ε ε ε ε ε ε ε ε
×z1 ×z8· · ·

Hamming Weight Model

Model

Y = ε× HW(Z )
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Advanced (Univ.) Attacks Modeling

Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: modelling for unprofiled attacks.

L← Y + B = ϕ(Z ) + B

To sum up

The deterministic part Y in a leakage L may be viewed as a
multivariate polynomial in the bit-coordinate zi of Z with
coefficients in R.

ϕ(Z ) is a polynomial in R[z1, · · · , zn] and this polynomial is a
priori unknown to the adversary.

The modelling problem hence reduces to a problem of
polynomial interpolation in noisy context:

from noisy observations of ϕ(Y ), we want to recover the
coefficients ε0, ε1, ... such that:

ϕ(Z ) = ε0z0 + ε1z1 + ...︸ ︷︷ ︸
linear part

+ ε0,1z0z1 + ε0,2z0z2 + ...︸ ︷︷ ︸
quadratic part

+ ...︸︷︷︸
etc.
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ϕ(Z ) is a polynomial in R[z1, · · · , zn] and this polynomial is a
priori unknown to the adversary.

The modelling problem hence reduces to a problem of
polynomial interpolation in noisy context:

from noisy observations of ϕ(Y ), we want to recover the
coefficients ε0, ε1, ... such that:

ϕ(Z ) = ε0z0 + ε1z1 + ...︸ ︷︷ ︸
linear part

+ ε0,1z0z1 + ε0,2z0z2 + ...︸ ︷︷ ︸
quadratic part

+ ...︸︷︷︸
etc.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: modelling for unprofiled attacks.

L← Y + B = ϕ(Z ) + B

ϕ(Z ) = ε0z0 + ε1z1 + ...

To sum up

The polynomial interpolation with noise problem is usually solved thanks
to linear regression techniques. See Schindler et al. at CHES 2005 or
Doget et al at JCEN 2011.

Usually, we assume the polynomial ϕ(Z) is of degree 1.

All the coefficients εi for degree-1 monomials are equal (to 1).

The latter assumption (called Hamming Weight) is today pertinent for
almost all smart card technologies.

For recent ones (e.g. 65nm tech.), the non-linear terms must be taken
into account. See Veyrat-Charvillon et al’s paper at CRYPTO 2011.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: General Framework (Theoretical)

Context: attack during the manipulation of S(X + k).

1 Measurement :
get a leakages sample (`k,i )i related to a sample (xi )i of plaintexts.

2 Model Selection :
Design/Select a function m(·).

3 Prediction :
For every k̂, compute mk̂,i = m(S(xi + k̂)).

4 Distinguisher Selection :
Choose a statistical distinguisher ∆.

5 Key Discrimination :
For every k̂, compute the distinguishing value ∆k̂ :

∆k̂ = ∆
(

(`k,i )i , (mk̂,i )i

)
.

6 Key Candidate Selection :
Deduce k̂ from all the values ∆k̂ .
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

Under INA assumption, the pdf fL of L is a Gaussian Mixture:

fL(`) =
∑
i

Pr[ϕ(Z ) = i ]×N (i , σ2)

Figure: No noise (σ = 0.2)

E. Prouff Side Channel Attacks



Advanced (Univ.) Attacks Distinguishers

Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

Under INA assumption, the pdf fL of L is a Gaussian Mixture:

fL(`) =
∑
i

Pr[ϕ(Z ) = i ]×N (i , σ2)

Figure: Small noise (σ = 0.5) Figure: Medium noise (σ = 2)
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

Question: which property of this mixture depends on the secret k?
Note: difficult question since the adversary does not know ϕ but a
model m for it!
Many proposals have been done in the literature:

DPA Kocher et al at CRYPTO 96,

Multi-bit DPA Messerges in his PhD Thesis,

CPA Brier et al at CHES 2004,

Stochastic Attacks Schindler et al at CHES 2006

or the MIA Gierlichs et al at CHES 2008.

etc.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

DPA attack Kocher et al at CRYPTO 96.

Attack Description Sheet/Form: DPA

Type of Leakage: no restriction.
Model Function: the function m : Z 7→ zi for some index i .
Statistical Distinguisher: difference of means Test.
Key Candidate Selection: the candidate the maximizes the scores.

Score value ∆k̂ : a statistical estimator of

∆k̂ = E(L | Mk̂ = 1)− E(L | Mk̂ = 0)

with Mk̂ equal to the ith bit of Z = S(X + k̂).
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

DPA attack Kocher et al at CRYPTO 96. Why does it work?

∆k̂ = E(L | Mk̂ = 1)− E(L | Mk̂ = 0)

= E(ϕ(Z ) + B | Mk̂ = 1)− E(ϕ(Z ) + B | Mk̂ = 0)

Since the noise B is independent of Z ,

∆k̂ = E(ϕ(Z ) | Mk̂ = 1)− E(ϕ(Z ) | Mk̂ = 0)

= E(εizi+(ϕ(Z )−εizi ) |Mk̂ = 1)−E(εizi+(ϕ(Z )−εizi ) |Mk̂ = 0)

Let us assume that (ϕ(Z )− εizi ) is independent of zi and Mk̂
(true in practice).

∆k̂ = εi
(
E(zi | Mk̂ = 1)− E(zi | Mk̂ = 0)

)
E. Prouff Side Channel Attacks
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

∆k̂ = εi
(
E(zi | Mk̂ = 1)− E(zi | Mk̂ = 0)

)
where

zi is the ith bit of S(M + k)

Mk̂ is the ith bit of S(M + k̂)

If k = k̂, then zi = Mk̂ and :

∆k̂ = εi (1− 0) = εi

If k = k̂, then zi and Mk̂ are independent (due to properties of S)
and

∆k̂ = εi (E(zi )− E(zi )) = 0
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

DPA attack Kocher et al at CRYPTO 96.

Pros: no need for assumption on the device properties, quite
efficient in practice.

Cons: does not use all the information in the trace and
attack each bit of the target separately.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

Multi-bit DPA attack Messerges in his PhD Thesis.

Attack Description Sheet/Form: Multi-bit DPA

Type of Leakage: no restriction.
Model Function m: the Hamming weight function.
Statistical Distinguisher: difference of means for a parameter τ .
Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value ∆k̂ : a statistical estimator of

∆k̂ = E(L | Mk̂ ≤ τ)− E(L | Mk̂ > τ)

with Mk̂ equal to the HW[S(X + k̂)].

Pros: exploit more information than the DPA.

Cons: need assumption (Hamming weight) on the device
behaviour.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

CPA attack Brier et al at CHES 2004.

Attack Description Sheet/Form: CPA

Type of Leakage: no restriction.
Model Function m: possibly any function (in practice HW).
Statistical Distinguisher: linear correlation coefficient.
Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value ∆k̂ : a statistical estimator of

∆k̂ = ρ(L,Mk̂)

Pros: exploit more information than the previous ones and is
more powerful

Cons: need assumption (Hamming weight) on the device
behaviour.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

CPA attack Brier et al at CHES 2004.
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behaviour.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

MIA attack Gierlichs et al at CHES 2008.

Attack Description Sheet/Form: MIA

Type of Leakage: no restriction.
Model Function m: any non-injective function (in practice HW).
Statistical Distinguisher: mutual information (MI).
Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value ∆k̂ : a statistical estimator of

∆k̂ = MI (L;Mk̂) = entropy(L)− entropy(L | Mk̂)

Pros: theoretically able to detect any kind of dependency
whatever the quality of the model if the function
x 7→ m ◦ S(x + k) is non-injective!
Cons: need for efficient estimators of the entropy (currently
less efficient than the CPA) Batina et al, Journal of Cryptology 2011.
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Advanced Side Channel Attacks (DPA like attacks)
Side Channel Analysis: the statistical distinguisher

MIA attack Gierlichs et al at CHES 2008.

Attack Description Sheet/Form: MIA

Type of Leakage: no restriction.
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Key Candidate Selection: the candidate the maximizes the scores.
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Pros: theoretically able to detect any kind of dependency
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Cons: need for efficient estimators of the entropy (currently
less efficient than the CPA) Batina et al, Journal of Cryptology 2011.
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Advanced Side Channel Attacks (DPA like attacks)
Other attacks

Stochastic attacks: See Schindler et al. at CHES 2005 or Doget et al at

JCEN 2011.

Good alternative when classical (e.g. HW) models fail.
Amounts to process an Euclidean distance between the leakage
values and the estimations in the regressed model.

Kolmogorov-Smirnov Based attacks: Whitnall et al. at CARDIS 2011.

Good alternative to the MIA.

PPA, EPA, VPA, etc: other attacks exist but are often very ad hoc
ones with no clear advantage to the ”classical” ones.

Works comparing the attacks:

”How to Compare Profiled Side-Channel Attacks?” Standaert

et al, ACNS 2009.
”A fair evaluation framework for comparing side-channel
distinguishers” by Withnall et al, JCEN 2011.
”Univariate Side Channel Attacks and Leakage Modeling” by
Doget et al, JCEN 2011.
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Regression Linear Based (a.k.a. stochastic) Attacks

Attack Description Sheet/Form: Linear Regression

Type of Leakage: no restriction.
Model Function: a set of basis functions m(i)(·, ·) s.t. ϕ can be
approximated as linear combination of them.
Statistical Distinguisher: Euclidean Distance (a.k.a. sum of
squares difference).
Key Candidate Selection: the candidate that maximizes the
goodness of fit coefficient.
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Regression Linear Based (a.k.a. stochastic) Attacks

Goal: recover Z or at least a good approximation of it!

Note: ... from noisy observations L of Z and from the
corresponding plaintexts X .

Idea: for each k̂ find the best approximation Ẑ of Z as a
linear combination of the variables m(i)(X , k̂).

If the distance ||Z − Ẑ ||2 is small =⇒ k̂ = k...
otherwise k̂ 6= k .
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Regression Linear Based (a.k.a. stochastic) Attacks

Set of all possible functions

Z

L = Z + ε

For each k̂ , define a basis Bk̂ = (m(i)(X , k̂))i .

Compute the distance between the e.v. spanned Bk̂ and L

Choose the key that minimizes the distance.
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Regression Linear Based (a.k.a. stochastic) Attacks

Set of all possible functions

spanned by a wrong basis B
k̂

spanned by the correct basis Bk

Distance null for the correct hypothesis!

L

For each k̂ , define a basis Bk̂ = (m(i)(X , k̂))i .

Compute the distance between the e.v. spanned Bk̂ and L

Choose the key that minimizes the distance.
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spanned by a wrong basis B
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Distinguishers Processing
... a partitioning description.

∆
k̂

=
∑

i
δi ×P[M

k̂
= i ]

(mean, variance, entropy, etc.)

δ0 δ1 δ2 δ...MIAZO CPACPA

M
k̂

= 0 M
k̂

= 1 M
k̂

= 2 M
k̂

= ...

L =

Combine the statistics

Process statistics

Partitions

Model values / Predictions
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Advanced Side Channel Attacks (DPA like attacks)
Attack Efficiency Consideration

Attack Efficiency

The efficiency of an SCA given a success rate β is the smallest
value N such that:

Pr(Attack succeeds in recovering k with N measurements) ≥ β .

Particular case: the attack involves correlation coefficient
(i.e.∆ = ρ):

Pr

(
ρ̂k(N) > max

k̂ 6=k
ρ̂k̂(N)

)
≥ β .

where ρ̂k(N) denotes the estimation of ρk based on N.
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Advanced Side Channel Attacks (DPA like attacks)
Attack Efficiency Consideration

Fisher: when ρ̂k̂(N) is computed between samples that have a joint

normal distribution, ZN,k̂ = 1
2

ln
(

1+ρ̂k (N)
1−ρ̂

k̂
(N)

)
has a normal distribution with

parameters

E(ZN,k̂) =
1

2
ln

(
1 + ρk
1− ρk̂

)
and Var(ZN,k̂) = (N − 3)−2.

[Mangard at CT-RSA 2004] So, Pr(ρ̂k(N) > ρ̂k̂(N)) = β implies:

N = 3 + 8

 Φ−1(β)

ln
(

1+ρk
1−ρk̂

)
2

,

where Φ denotes the pdf of N (0, 1).
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Fisher: when ρ̂k̂(N) is computed between samples that have a joint

normal distribution, ZN,k̂ = 1
2

ln
(

1+ρ̂k (N)
1−ρ̂

k̂
(N)

)
has a normal distribution with

parameters

E(ZN,k̂) =
1

2
ln

(
1 + ρk
1− ρk̂

)
and Var(ZN,k̂) = (N − 3)−2.

[Mangard at CT-RSA 2004] Assuming ρk̂(N) = 0 we get:

N ≈ 8× Φ−1(β)2 × ρ−2
k ,

since ln(1 + x) ≈ x if |x | < 1.
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Advanced Side Channel Attacks (DPA like attacks)
Link between Efficiency and Signal to Noise Ratio (SNR)

Let us define the SNR by:

SNR =
Var[L]− E[Var[L | Z ]]

E[Var[L | Z ]]
=

Var[ϕ(Z )]

E[Var[L | Z ]]

Note: can be computed without knowing ϕ!

[Mangard at CT-RSA 2004] If SNR� 1, we have

ρk̂(N) = SNR× ρ0
k̂

(N)

where ρ0
k̂
(N) denotes the correl. when there is no stoch. noise.

Consequently,

N ∼ 1

SNR
SNR = 0.01 → around 100 traces → few seconds

SNR = 0.001 → around 1000 traces → less than 1/4 hour

SNR = 0.0001 → around 1O5 traces → several hours

SNR = 10−6 → several millions of traces → several days
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Advanced Side Channel Attacks (DPA like attacks)
More accurate efficiency evaluations

Core Idea: relax the assumption ρk̂(N) = 0 for any k̂ 6= 0.

Note: this assumption contradicts the ghost Peaks
phenomenon ... which is however observed in practice!

Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding,

CHES 2012, Thillard, Prouff, Roche, CHES 2013.
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Use the notion of Confusion
Coefficient, defined for every
δ by:

κδ = E[m◦S(X+k)×m◦S(X+k + δ)] ,

where m is the model used in

the attack.
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Advanced Side Channel Attacks (DPA like attacks)
Efficiency of Other Attacks (MIA, Templates, etc.)

When provided with the same a priori information about the
leakage, CPA, MIA, DPA and Gaussian template attacks are
asymptotically equivalent Mangard et al, IET Information Security

2011.
=⇒ Efficiency formula N ≈ 8× Φ−1(β)2 ×∆−2

k stays true for
the corresponding distinguishers.

Note: for Template attacks, the cost of the on-line phase may
be constant but the cost of the off-line templates building will
be linear in SNR−1.
In conclusion, adding security consists in finding efficient
way(s) to decrease ∆k as much as possible.

i.e.specify the algorithm implementation such that for any
instantaneous leakage L, for any key part k and for any
function g :

∆(L, g(X , k)) < ε ,

where X is some plaintext part and ε is a security parameter.
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SCA Countermeasures

Masking [IBM Team at CRYPTO 1999].

Efficient against SCA in practice.
Difficult to implement for non-linear
transformations.

Shuffling [Researchers from Graz University at

ACNS 2006].

Less efficient against SCA in practice.
Easy to implement for every
transformation.

Whitening [Kocher Jaffe June, CRYPTO 1999].

Less efficient than masking when used
alone and costly in Hardware.
Easy to implement for every
transformation.
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SCA Countermeasures

Core Ideas
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SCA Countermeasures

Core Ideas

Desynchronisation = different points, same amplitutde
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Core Ideas

Masking = same point, random amplitude
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Introduction and General Principles

SCA Countermeasures

Core Ideas

Balanced Logic = same point, constant amplitude
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Introduction and General Principles Attacks Against Countermeasures: Core Ideas

Higher Order Side Channel Attacks
Core Principle

First Order Masking: M0 = Z ⊕M1

=⇒ Second Order SCA:
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Introduction and General Principles Attacks Against Countermeasures: Core Ideas

Higher Order Side Channel Attacks
Introduction

Advanced SCA have been defined to target each CM

d th-order Masking: HO-SCA

[Messerges in his PhD Thesis]

Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et

al at Journal of Cryptology 2011

tth-order Shuffling: Integrated Attacks

[Clavier et al at CHES 2000]

(d th-order Masking)-and-(tth-order shuffling): Integrated
HO-SCA

[Tillich et al at ACNS 2007]

Improved in [Rivain et al at CHES 2009]
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Introduction and General Principles Attacks Against Countermeasures: Core Ideas

Higher Order Side Channel Attacks
Introduction - General Principle

All the previous SCA follow the same outlines.

1 Input: set of observations for the signals (Li )i related to a sensitive
datum Z

2 Choose a statistical distintguisher ∆ and a pre-processing function f

3 From the observations, estimate f (Li )

4 For every hypothesis HW[S(M + k̂)] on Z , estimate

∆k̂ = |∆(HW[S(M + k̂)], f ((Li )i ))| .

5 Select the hypothesis that maximizes the estimation of ∆k̂ .

Note: if the mutual information is used instead of the correlation
coefficient, there is not need for a pre-processing function f .
In other cases, the single difference is the function f .
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Introduction and General Principles Attacks Against Masking

HO-SCA against Higher Order Masking
Illustration with ∆ being Pearson’ Correlation Coefficient

Context: sensitive variable Z split into d + 1 shares M0, ...., Md

Notation: Li is the signal related to Mi .

Function f is a normalized product:

f (L0, · · · , Ld) =
d∏

i=0

(Li − E(Li )) .

In the Hamming Weight Model, the efficiency satisfies:

ρk =
cst1(√

1 + cst2 · σ2
)d+1

.

It is denoted by ρ(d , σ).
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Introduction and General Principles Attacks Against Shuffling

Integrated SCA Against Shuffling
Illustration with ∆ being Pearson’ Correlation Coefficient

Context: the signal S containing information about Z is randomly
spread over t different signals L1, ..., Lt .

Function f is an Integrated signal:

f (L1, · · · , Lt) = L1 + L2 + ...+ Lt

Note: the sum always contains the term S .
In the Hamming Weight Model, the efficiency satisfies:

ρk =
1

√
t
√

1 + cst2 · σ2
.
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Introduction and General Principles Attacks Against Shuffling

Advanced SCA vs Masking-and-Shuffling
Illustration with ∆ being Pearson’ Correlation Coefficient

Context: X is split into d + 1 shares M0, M1, ..., Md whose
manipulations are randomly spread over t different times.

Function f is a Combined-and-Integrated Signal:

f ((Li )i ) =
∑

(i0,...,id )∈I

d∏
j=0

(
Lij − E(Lij )

)
.

Note: the sum always contains the term
∏d

i=0(Mi − E(Mi )).
In the Hamming Weight Model, the efficiency satisfies:

ρk =
1√
#I

ρ(d , σ) .
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SCA Example: Attack Against RSA Key Generation

Plan
1 Advanced (Univ.) Attacks

Introduction in the context of AES
Attacks Description (Univ. Case)
Modeling
Distinguishers
Efficiency

2 Introduction and General Principles
Shuffling Method
Masking Method
Attacks Against Countermeasures: Core Ideas
Attacks Against Masking
Attacks Against Shuffling

3 SCA Example: Attack Against RSA Key Generation
Context
A new attack
Limitations and Experimental Results
Conclusions an Improvements
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SCA Example: Attack Against RSA Key Generation Context

RSA Key Generation

RSA keys

2 primes: (p, q) (between 512 and 4092 bits)

N = pq, e

d = e−1 mod φ(N)

RSA strong keys

2 primes: (p, q) (between 512 and 4092 bits)

p − 1, p + 1, q − 1 and q + 1 possess a large factor (100 bits)

N = pq, e

d = e−1 mod φ(N)
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SCA Example: Attack Against RSA Key Generation Context

Large prime numbers are easy to find [Gordon’84]

For r large, the r th prime number is about r log r
↪→ by randomly picking r between x and x/2

Pr(r is prime) ' 1/(log x)

Incremental Search

1 pick a random odd seed v ∈ [x/2, x ]

2

3 verify that it is a prime with good probability

4 if yes, return.

5 otherwise increase v by 2 and go back to step 2.

[Brant et al 91, 92] and norms ANSI X9.31 and FIPS 186-4
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Large prime numbers are easy to find [Gordon’84]

For r large, the r th prime number is about r log r
↪→ by randomly picking r between x and x/2

Pr(r is prime) ' 1/(log x)

Incremental Search with sieving process

1 pick a random odd seed v ∈ [x/2, x ]

2 test the divisibility by small primes (< 256)

3 verify that it is a prime with good probability

4 if yes, return.

5 otherwise increase v by 2 and go back to step 2.

[Brant et al 91, 92] and norms ANSI X9.31 and FIPS 186-4

E. Prouff Side Channel Attacks



SCA Example: Attack Against RSA Key Generation Context

Large prime numbers are easy to find [Gordon’84]

For r large, the r th prime number is about r log r
↪→ by randomly picking r between x and x/2

Pr(r is prime) ' 1/(log x)

Incremental Search with sieving process

1 pick a random odd seed v ∈ [x/2, x ]

2 test the divisibility by small primes (< 256)

3 verify that it is a prime with good probability

4 if yes, return.

5 otherwise increase v by 2 and go back to step 2.

[Brant et al 91, 92] and norms ANSI X9.31 and FIPS 186-4

E. Prouff Side Channel Attacks



SCA Example: Attack Against RSA Key Generation Context

Primes Generation by Incremental search

Input : A bit-length `, an even constant τ , the set S = {s0, · · · , s52} of all odd primes lower than 256 (stored
in ROM), a number t of Miller-Rabin tests to perform

Output: A probable prime p

/* Generate a seed */

1 randomly generate an odd `-bit integer v0;

/* Prime Sieve */

2 v ← v0; s ← s0; j = 0;
3 while (v mod s 6= 0) and (j < 53) do
4 j = j + 1;
5 s ← sj ;

6 if (j 6= 53) then
7 v = v + τ ;
8 goto Step 3;

/* Probabilistic primality tests */

9 else
10 i = 0;

/* Process t Miller-Rabin’s tests (stop if one fails) */

11 while (Miller-Rabin( ) = ok) and (i < t) do
12 i = i + 1;

/* Process 1 Lucas’ testa */

13 if (i = t) and (Lucas( ) = ok) then
14 return v;

15 else
16 v = v + τ ;
17 goto Step 3;

aMiller-Rabin’s tests are followed by one Lucas’ test because there is no
known composite integer n for which they are both reporting that n is probably
prime.
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SCA Example: Attack Against RSA Key Generation Context

SPA on key generations

[Finke et al 09]

Attacker model: knows when the sieving is stopping for a
candidate (i.e.when v0 + τ i = 0 mod sj), where

i is the index of the tested candidate: assumed to be known.
sj is the j th sieving element: assumed to be known.

From p = v0 + τn (with n the number of tested candidates),
build the equations p − τ(n − i) = 0 mod sj , where

n is the final number of tested candidates: assumed to be
known.

Using the CRT, part of p = v0 + τn may be retrieved
(including p mod

∏
j sj)

Finish using Coppersmith factorisation method
↪→ need at least log p

2 bits
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SPA on key generations

[Finke et al 09]

Attacker model: knows when the sieving is stopping for a
candidate (i.e.when v0 + τ i = 0 mod sj), where

i is the index of the tested candidate: assumed to be known.
sj is the j th sieving element: assumed to be known.

From p = v0 + τn (with n the number of tested candidates),
build the equations p − τ(n − i) = 0 mod sj , where

n is the final number of tested candidates: assumed to be
known.

Using the CRT, part of p = v0 + τn may be retrieved
(including p mod

∏
j sj)

Finish using Coppersmith factorisation method
↪→ need at least log p

2 bits

. . . there exist a very convenient countermeasure
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SCA Example: Attack Against RSA Key Generation Context

Prime Sieve

/* Prime Sieve for v0 */

1 for j = 0 to 52 do
2 R[j]← v0 mod sj ; /* costly modular reduction over `-bit integers */

3 ;

/* Prime Sieve for vi with i > 0 */

4 v ← v0;
5 while (R does not contain a null remainder) do
6 v = v + τ ;
7 for j = 0 to 52 do

/* efficient modular reduction over 8-bit integers */

8 R[j]← R[j] + τ mod sj ;

Algorithm 1: Improved Prime Sieve
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Prime Sieve

/* Prime Sieve for v0 */

1 for j = 0 to 52 do
2 R[j]← v0 mod sj ; /* costly modular reduction over `-bit integers */

3 ;

/* Prime Sieve for vi with i > 0 */

4 v ← v0;
5 while (R does not contain a null remainder) do
6 v = v + τ ;
7 for j = 0 to 52 do

/* efficient modular reduction over 8-bit integers */

8 R[j]← R[j] + τ mod sj ;

Algorithm 2: Improved Prime Sieve
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SCA Example: Attack Against RSA Key Generation Context

Prime Sieve

/* Prime Sieve for v0 */

1 for j = 0 to 52 do
2 R[j]← v0 mod sj ; /* costly modular reduction over `-bit integers */

3 ;

/* Prime Sieve for vi with i > 0 */

4 v ← v0;
5 while (R does not contain a null remainder) do
6 v = v + τ ;
7 for j = 0 to 52 do

/* efficient modular reduction over 8-bit integers */

8 R[j]← R[j] + τ mod sj ;

Algorithm 3: Improved Prime Sieve
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SCA Example: Attack Against RSA Key Generation A new attack

Differential SCA on the balanced prime sieve

For every j ≤ λ and every i ≤ n, the attacker may observe the
manipulation of v0 + τ i mod sj by the device.
Then, he can try to recover v0 which is the sole unknown value.

Focusing on v mod sj

With a small hypothesis on v0 mod sj , for every i ≤ n one can
guess

v0 + τ i mod sj .

↪→ select a leakage model and apply a DPA, CPA, MIA, . . . to test
the hypotheses ↪→ (hopefully) leads to the recovery of v0 mod sj .

Finish like [Finke et al 09]
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SCA Example: Attack Against RSA Key Generation A new attack

Differential SCA on the balanced prime sieve

For every j ≤ λ and every i ≤ n, the attacker may observe the
manipulation of v0 + τ i mod sj by the device.
Then, he can try to recover v0 which is the sole unknown value.

Focusing on v mod sj

With a small hypothesis on v0 mod sj , for every i ≤ n one can
guess

v0 + τ i mod sj .

↪→ select a leakage model and apply a DPA, CPA, MIA, . . . to test
the hypotheses ↪→ (hopefully) leads to the recovery of v0 mod sj .

Finish like [Finke et al 09]

Size of n?

Success Rate of this attack with common leakage model?

Limitations in practice?
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SCA Example: Attack Against RSA Key Generation A new attack

Simulation Results
Size of n

Figure: Cumulative distribution function of n for different prime
bit-lengths `
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SCA Example: Attack Against RSA Key Generation A new attack

Simulation Results
success rate

(a) 53 iterations (Q1) (b) 126 iterations (Q2)

(c) 246 iterations (Q3)

Figure: Success rates for the first 53 primesE. Prouff Side Channel Attacks



SCA Example: Attack Against RSA Key Generation A new attack

Simulation Results
success rate

(a) 53 iterations (Q1) (b) 126 iterations (Q2)

(c) 246 iterations (Q3)

σ Q1 Q2 Q3

0 1 1 1
1 1 1 1
2 0.46 1 1
3 0 0.99 1
4 0 0.08 1
5 0 0 0.7

(d) Success rate to re-
cover 256 bits

Figure: Number of bits retrieved from different noise levelsE. Prouff Side Channel Attacks



SCA Example: Attack Against RSA Key Generation Limitations and Experimental Results

Traces acquisition in practice

Parameters

512 primes generations

8-bit CPU running at ∼ 50 MHz

sieving size: 53

primality tests: 10 Miller-Rabins

modular arithmetic co-processor

In a worst case scenario the generation can take 2.5s

Acquisition Oscilloscope

250 MSamples of memory

100 MSamples per seconds
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SCA Example: Attack Against RSA Key Generation Limitations and Experimental Results

Traces acquisition in practice

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure: Electro-magnetic radiations measured during a prime number
generation computation on a commercial smartcard. Pattern 1
corresponds to the initial costly prime sieve, whereas patterns 2 to 28
correspond to Miller-Rabin tests.
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SCA Example: Attack Against RSA Key Generation Limitations and Experimental Results

Results on a toy example

focus on the sieving process on a 8-bit CPU

varying number n of iterations
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(b) Success rates for recovering x
bits of information on the gener-
ated prime
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SCA Example: Attack Against RSA Key Generation Conclusions an Improvements

Attack Improvements

Find the correct bits of p

Key Enumeration Algorithms [Veyrat et al 12]

Coherency check using RSA equation N = pq
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SCA Example: Attack Against RSA Key Generation Conclusions an Improvements

Change the standards

Existing Solutions

Fouque-Tibouchi 2011
Inject randomness at each iteration

Clavier et al 2012
Efficient provable prime generation

E. Prouff Side Channel Attacks
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