Side Channel Attacks against Block Ciphers Implementations and Countermeasures

Emmanuel Prouff e.prouff@gmail.com

ANSSI

MCrypt - August 2014

Plan

- Advanced (Univ.) Attacks
 - Introduction in the context of AES
 - Attacks Description (Univ. Case)
 - Modeling
 - Distinguishers
 - Efficiency
 - Introduction and General Principles
 - Shuffling Method
 - Masking Method
 - Attacks Against Countermeasures: Core Ideas
 - Attacks Against Masking
 - Attacks Against Shuffling
- SCA Example: Attack Against RSA Key Generation
 - Context
 - A new attack
 - Limitations and Experimental Results
 - Conclusions an Improvements

- Advanced Side Channel Attacks can extract information from observations in contexts where SPA fails.
- They involve statistical tools (simple difference of means tests – or sophisticated – mutual information processing –).
- They need several (between 10 and more than 10⁶) traces such that:
 - the secret is constant,
 - the inputs are different and [optional] known.
 - [optional] some knowledge about the device architecture, the implementation or the noise characteristics.
- They follow a divide-and-conquer approach: the secret is rebuild piece by piece, where each piece is deduced from the behavior of an intermediate result. The size of the piece usually depends on the architecture size (*e.g.* 8, 16 or 32 bits).

Advanced Side Channel Attacks (DPA like attacks) AES Round - Software Implementation – SCA attack

Leakage at time t depends on the data manipulated at this time.

- Power consumption leakage during the manipulation of a 8-bit variable by a card [Kocher, Jaffe and Jun, CRYPTO 1999].
- ② Electromagnetic emanation during the same manipulation [Quisquater and Samyde, ESmart 2001].
- Note 1: traces repartition does not look random.

Note 2: power consumptions are always positive whereas electromagnetic emanations are signed.

Example: **pdf** of the leakage for a device processing...

... AES-Sbox $(X + \mathbf{K})$ with $\mathbf{K} = 1$.

X varies uniformly For each time (abs.) and each value ℓ in a finite interval (ord.) we plotted in *z*-axis:

 $Pr[\mathsf{leakage} = \ell] \sim pdf_{\mathsf{leakage}}(\ell)$

... AES-Sbox $(X + \mathbf{K})$ with $\mathbf{K} = 2$.

M varies uniformly For each time (abs.) and each value ℓ in a finite interval (ord.) we plotted in *z*-axis:

 $Pr[leakage = \ell] \sim pdf_{leakage}(\ell)$

... AES-Sbox $(X + \mathbf{K})$ with $\mathbf{K} = 3$.

M varies uniformly For each time (abs.) and each value ℓ in a finite interval (ord.) we plotted in *z*-axis:

 $Pr[leakage = \ell] \sim pdf_{leakage}(\ell)$

... AES-Sbox $(X + \mathbf{K})$ with $\mathbf{K} = 4$.

M varies uniformly For each time (abs.) and each value ℓ in a finite interval (ord.) we plotted in *z*-axis:

 $Pr[\mathsf{leakage} = \ell] \sim pdf_{\mathsf{leakage}}(\ell)$

• [Pre-computation] For every possible key k* pre-compute the pdf of the leakage L.

- [Necessary Condition] Have an open access to a copy of the target device and be able to choose the key value.
- [Measurement] Measure the consumption for the target device and estimate the pdf of L for this target.

• [Pre-computation] For every possible key k^{*} pre-compute the pdf of the leakage L.

- [Necessary Condition] Have an open access to a copy of the target device and be able to choose the key value.
- [Measurement] Measure the consumption for the target device and estimate the pdf of L for this target.

 [Pre-computation] For every possible key k^{*} pre-compute the pdf of the leakage L.

- [Necessary Condition] Have an open access to a copy of the target device and be able to choose the key value.
- [Measurement] Measure the consumption for the target device and estimate the pdf of L for this target.

• [Pre-computation] For every possible key k* pre-compute the pdf of the leakage L.

- [Necessary Condition] Have an open access to a copy of the target device and be able to choose the key value.
- [Measurement] Measure the consumption for the target device and estimate the pdf of L for this target.

Advanced (Univ.) Attacks Attacks Description (Univ. Case)

Advanced Side Channel Attacks (DPA like attacks) Side Channel Analysis: General Framework.

Context: attack during the manipulation of Z = S(X + k).

Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- **O** Prediction :
 - For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.
- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_i, \left(m_{\hat{k},i}\right)_i\right)$$
.

- **(6)** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of Z = S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- 2 Model Selection :
 - Design/Select a function **m**(·).
- **O** Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right)$$
.

- **6** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of Z = S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function **m**(·).

B Prediction :

• For every \hat{k}_i , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

Oistinguisher Selection :

• Choose a statistical distinguisher Δ .

6 Key Discrimination :

For every k
, compute the distinguishing value Δ_k:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_i, \left(m_{\hat{k},i}\right)_i\right)$$
.

6 Key Candidate Selection :

• Deduce \hat{k} from all the values $\Delta_{\hat{k}}.$

Context: attack during the manipulation of Z = S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- Operation Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **6** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}
ight)$$
.

- **6** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of Z = S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- Operation Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **6** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}
ight)$$
.

- **()** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of Z = S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- Operation Prediction :
 - For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.
- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right) \quad .$$

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of Z = S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- Operation Prediction :
 - For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.
- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right) \quad .$$

- **(6)** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Advanced Side Channel Attacks (DPA like attacks) Side Channel Analysis: attack Description Sheet/Form

Attack Description Sheet/Form

Type of Leakage: e.g. power consumption or electromagnetic emanation Model Function:e.g. one bit of Z or its Hamming weight Statistical Distinguisher: e.g. difference of means, correlation or entropy Key Candidate Selection: e.g. the candidate the maximizes the scores
Context: attack during the manipulation of S(X + k).

• Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- O Prediction :
 - For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.
- O Distinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{\boldsymbol{k},i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right) \ .$$

- **(6)** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

get a leakages sample (l_{k,i}); related to a sample (x_i); of plaintexts.
2 Model Selection :

Design/Select a function m(·).

O Prediction :

• For every \hat{k}_i compute $m_{\hat{k},i} = \mathsf{m}(S(x_i + \hat{k})).$

- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ.
- 6 Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left((\ell_{k,i})_i, (m_{\hat{k},i})_i\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

- **O** Measurement :
 - get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.
- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- O Prediction :
 - For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.
- Oistinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **6** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Side Channel Analysis: define a model for the consumption.

Goal: define the kind of dependency between the manipulated data and the device behaviour.

- First solution (template/profiled attacks principle):
 - use an exact copy of the attacked device and estimate the pdf of *L* for every possible pair (*X*, *k*).
 - see [Chari et al at CHES 2002].
- Second solution (unprofiled attacks principle):
 - model the function $\mathbf{E}[L| X = x, K = k]$.
 - see Messerges PhD Thesis.

Side Channel Analysis: define a model for the consumption.

Goal: define the kind of dependency between the manipulated data and the device behaviour.

- First solution (template/profiled attacks principle):
 - use an exact copy of the attacked device and estimate the pdf of *L* for every possible pair (*X*, *k*).
 - see [Chari et al at CHES 2002].
- Second solution (unprofiled attacks principle):
 - model the function $\mathbf{E}[L| X = x, K = k]$.
 - see Messerges PhD Thesis.

Side Channel Analysis: define a model for the consumption.

Goal: define the kind of dependency between the manipulated data and the device behaviour.

- First solution (template/profiled attacks principle):
 - use an exact copy of the attacked device and estimate the pdf of *L* for every possible pair (*X*, *k*).
 - see [Chari et al at CHES 2002].
- Second solution (unprofiled attacks principle):
 - model the function $\mathbf{E}[L | X = x, K = k]$.
 - see Messerges PhD Thesis.

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

Independent Noise Assumption (INA)

The random variable L related to the manipulation of Z equals Y + B, where Y is a function of Z and B is independent of Z.

- *B* is usually called the noise and is viewed as a continuous random variable.
- We usually assume B ~ N(0, σ²). (Gaussian Noise Assumption).
- Usually, we have Z = S(X + K) where
 - X is known,
 - k is the secret to recover
 - $S(\cdot)$ is a known cryptographic primitive (*e.g. an s-box*).

New problem statement

$$L \leftarrow Y + B = \varphi(Z) + B$$

- The deterministic part Y in a leakage L may be viewed as a multivariate polynomial in the bit-coordinate z_i of Z with coefficients in \mathbb{R} .
 - $\varphi(Z)$ is a polynomial in $\mathbb{R}[z_1, \dots, z_n]$ and this polynomial is a priori unknown to the adversary.
- The modelling problem hence reduces to a problem of polynomial interpolation in noisy context:
 - from noisy observations of φ(Y), we want to recover the coefficients ε₀, ε₁, ... such that:

$$L \leftarrow Y + B = \varphi(Z) + B$$

- The deterministic part Y in a leakage L may be viewed as a multivariate polynomial in the bit-coordinate z_i of Z with coefficients in ℝ.
 - $\varphi(Z)$ is a polynomial in $\mathbb{R}[z_1, \dots, z_n]$ and this polynomial is a priori unknown to the adversary.
- The modelling problem hence reduces to a problem of polynomial interpolation in noisy context:
 - from noisy observations of φ(Y), we want to recover the coefficients ε₀, ε₁, ... such that:

$$L \leftarrow Y + B = \varphi(Z) + B$$

- The deterministic part Y in a leakage L may be viewed as a multivariate polynomial in the bit-coordinate z_i of Z with coefficients in ℝ.
 - $\varphi(Z)$ is a polynomial in $\mathbb{R}[z_1, \dots, z_n]$ and this polynomial is a priori unknown to the adversary.
- The modelling problem hence reduces to a problem of polynomial interpolation in noisy context:
 - from noisy observations of φ(Y), we want to recover the coefficients ε₀, ε₁, ... such that:

$$\varphi(Z) = \underbrace{\varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots}_{\text{linear part}} + \underbrace{\varepsilon_{0,1} z_0 z_1 + \varepsilon_{0,2} z_0 z_2 + \dots}_{\text{quadratic part}} + \underbrace{\dots}_{\text{etc.}}$$

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (*e.g.* 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

$$L \leftarrow Y + B = \varphi(Z) + B$$

$$\varphi(Z) = \varepsilon_0 z_0 + \varepsilon_1 z_1 + \dots$$

- The polynomial interpolation with noise problem is usually solved thanks to linear regression techniques. See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
- Usually, we assume the polynomial $\varphi(Z)$ is of degree 1.
- All the coefficients ε_i for degree-1 monomials are equal (to 1).
- The latter assumption (called Hamming Weight) is today pertinent for almost all smart card technologies.
- For recent ones (e.g. 65nm tech.), the non-linear terms must be taken into account. See Veyrat-Charvillon et al's paper at CRYPTO 2011.

Context: attack during the manipulation of S(X + k).

• Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

- Ø Model Selection :
 - Design/Select a function $\mathbf{m}(\cdot)$.
- **6** Prediction :
 - For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.
- O Distinguisher Selection :
 - Choose a statistical distinguisher Δ .
- **()** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{\boldsymbol{k},i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right) \ .$$

- **(6)** Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

• Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function $\mathbf{m}(\cdot)$.

In Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

Oistinguisher Selection :

Choose a statistical distinguisher Δ.

- **6** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left((\ell_{k,i})_i, (m_{\hat{k},i})_i\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function HW.

O Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = HW(S(x_i + \hat{k}))$.

O Distinguisher Selection :

Choose a statistical distinguisher Δ.

- **(** Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right)$$
.

- 6 Key Candidate Selection :
 - Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Context: attack during the manipulation of S(X + k).

O Measurement :

• get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

Ø Model Selection :

• Design/Select a function HW.

6 Prediction :

• For every \hat{k} , compute $m_{\hat{k},i} = HW(S(x_i + \hat{k}))$.

O Distinguisher Selection :

- Choose a statistical distinguisher Δ .
- 6 Key Discrimination :
 - For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta\left(\left(\ell_{k,i}\right)_{i}, \left(m_{\hat{k},i}\right)_{i}\right)$$
.

6 Key Candidate Selection :

• Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

Under INA assumption, the pdf f_L of L is a Gaussian Mixture:

$$f_L(\ell) = \sum_i \Pr[\varphi(Z) = i] \times \mathcal{N}(i, \sigma^2)$$

Figure: No noise ($\sigma = 0.2$)

Under INA assumption, the pdf f_L of L is a Gaussian Mixture:

$$f_L(\ell) = \sum_i \Pr[\varphi(Z) = i] \times \mathcal{N}(i, \sigma^2)$$

Figure: Small noise ($\sigma = 0.5$)

Figure: Medium noise ($\sigma = 2$)

Question: which property of this mixture depends on the secret k? Note: difficult question since the adversary does not know φ but a model **m** for it!

- DPA Kocher et al at CRYPTO 96,
- Multi-bit DPA Messerges in his PhD Thesis,
- CPA Brier et al at CHES 2004,
- Stochastic Attacks Schindler et al at CHES 2006
- or the MIA Gierlichs et al at CHES 2008.
- etc.

Question: which property of this mixture depends on the secret k? Note: difficult question since the adversary does not know φ but a model **m** for it!

- DPA Kocher et al at CRYPTO 96,
- Multi-bit DPA Messerges in his PhD Thesis,
- CPA Brier et al at CHES 2004,
- Stochastic Attacks Schindler et al at CHES 2006
- or the MIA Gierlichs et al at CHES 2008.
- etc.

Question: which property of this mixture depends on the secret k? Note: difficult question since the adversary does not know φ but a model **m** for it!

- DPA Kocher et al at CRYPTO 96,
- Multi-bit DPA Messerges in his PhD Thesis,
- CPA Brier et al at CHES 2004,
- Stochastic Attacks Schindler et al at CHES 2006
- or the MIA Gierlichs et al at CHES 2008.
- etc.

Question: which property of this mixture depends on the secret k? Note: difficult question since the adversary does not know φ but a model **m** for it!

- DPA Kocher et al at CRYPTO 96,
- Multi-bit DPA Messerges in his PhD Thesis,
- CPA Brier et al at CHES 2004,
- Stochastic Attacks Schindler et al at CHES 2006
- or the MIA Gierlichs et al at CHES 2008.
- etc.

Side Channel Analysis: the statistical distinguisher

DPA attack Kocher et al at CRYPTO 96.

Attack Description Sheet/Form: DPA

Type of Leakage: no restriction. Model Function: the function $\mathbf{m} : Z \mapsto z_i$ for some index *i*. Statistical Distinguisher: difference of means Test. Key Candidate Selection: the candidate the maximizes the scores.

Score value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} = 1) - \mathsf{E}(L \mid M_{\hat{k}} = 0)$$

with $M_{\hat{k}}$ equal to the *i*th bit of $Z = S(X + \hat{k})$.

DPA attack Kocher et al at CRYPTO 96.

Attack Description Sheet/Form: DPA

Type of Leakage: no restriction. Model Function: the function $\mathbf{m} : Z \mapsto z_i$ for some index *i*. Statistical Distinguisher: difference of means Test. Key Candidate Selection: the candidate the maximizes the scores.

Score value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} = 1) - \mathsf{E}(L \mid M_{\hat{k}} = 0)$$

with $M_{\hat{k}}$ equal to the *i*th bit of $Z = S(X + \hat{k})$.
DPA attack Kocher et al at CRYPTO 96. Why does it work?

$$\begin{split} \Delta_{\hat{k}} &= \mathbf{E}(L \mid M_{\hat{k}} = 1) - \mathbf{E}(L \mid M_{\hat{k}} = 0) \\ &= \mathbf{E}(\varphi(Z) + B \mid M_{\hat{k}} = 1) - \mathbf{E}(\varphi(Z) + B \mid M_{\hat{k}} = 0) \end{split}$$

Since the noise B is independent of Z,

$$\Delta_{\hat{k}} = \mathbf{E}(\varphi(Z) \mid M_{\hat{k}} = 1) - \mathbf{E}(\varphi(Z) \mid M_{\hat{k}} = 0)$$

= $\mathbf{E}(\varepsilon_i z_i + (\varphi(Z) - \varepsilon_i z_i) \mid M_{\hat{k}} = 1) - \mathbf{E}(\varepsilon_i z_i + (\varphi(Z) - \varepsilon_i z_i) \mid M_{\hat{k}} = 0)$

Let us assume that $(\varphi(Z) - \varepsilon_i z_i)$ is independent of z_i and $M_{\hat{k}}$ (true in practice).

$$\Delta_{\hat{k}} = \varepsilon_i \left(\mathsf{E}(z_i \mid M_{\hat{k}} = 1) - \mathsf{E}(z_i \mid M_{\hat{k}} = 0) \right)$$

$$\Delta_{\hat{k}} = \varepsilon_i \left(\mathsf{E}(z_i \mid M_{\hat{k}} = 1) - \mathsf{E}(z_i \mid M_{\hat{k}} = 0) \right)$$

where

•
$$z_i$$
 is the *i*th bit of $S(M + k)$
• $M_{\hat{k}}$ is the *i*th bit of $S(M + \hat{k})$
If $k = \hat{k}$, then $z_i = M_{\hat{k}}$ and :

$$\Delta_{\hat{k}} = \varepsilon_i \left(1 - 0 \right) = \varepsilon_i$$

If $k = \hat{k}$, then z_i and $M_{\hat{k}}$ are independent (due to properties of S) and

$$\Delta_{\hat{k}} = \varepsilon_i \left(\mathsf{E}(z_i) - \mathsf{E}(z_i) \right) = 0$$

DPA attack Kocher et al at CRYPTO 96.

- Pros: no need for assumption on the device properties, quite efficient in practice.
- Cons: does not use all the information in the trace and attack each bit of the target separately.

Multi-bit DPA attack Messerges in his PhD Thesis.

Attack Description Sheet/Form: Multi-bit DPA

Type of Leakage: no restriction. Model Function **m**: the Hamming weight function. Statistical Distinguisher: difference of means for a parameter τ . Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} \leq au) - \mathsf{E}(L \mid M_{\hat{k}} > au)$

with $M_{\hat{k}}$ equal to the HW[$S(X + \hat{k})$].

- Pros: exploit more information than the DPA.
- Cons: need assumption (Hamming weight) on the device behaviour.

Multi-bit DPA attack Messerges in his PhD Thesis.

Attack Description Sheet/Form: Multi-bit DPA

Type of Leakage: no restriction. Model Function **m**: the Hamming weight function. Statistical Distinguisher: difference of means for a parameter τ . Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} \leq au) - \mathsf{E}(L \mid M_{\hat{k}} > au)$$

with $M_{\hat{k}}$ equal to the HW[$S(X + \hat{k})$].

- Pros: exploit more information than the DPA.
- Cons: need assumption (Hamming weight) on the device behaviour.

Multi-bit DPA attack Messerges in his PhD Thesis.

Attack Description Sheet/Form: Multi-bit DPA

Type of Leakage: no restriction. Model Function **m**: the Hamming weight function. Statistical Distinguisher: difference of means for a parameter τ . Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

$$\Delta_{\hat{k}} = \mathsf{E}(L \mid M_{\hat{k}} \leq au) - \mathsf{E}(L \mid M_{\hat{k}} > au)$$

with $M_{\hat{k}}$ equal to the HW[$S(X + \hat{k})$].

- Pros: exploit more information than the DPA.
- Cons: need assumption (Hamming weight) on the device behaviour.

CPA attack Brier et al at CHES 2004.

Attack Description Sheet/Form: CPA

Type of Leakage: no restriction. Model Function **m**: possibly any function (in practice HW). Statistical Distinguisher: linear correlation coefficient. Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} =
ho(L, M_{\hat{k}})$

- Pros: exploit more information than the previous ones and is more powerful
- Cons: need assumption (Hamming weight) on the device behaviour.

CPA attack Brier et al at CHES 2004.

Attack Description Sheet/Form: CPA

Type of Leakage: no restriction. Model Function **m**: possibly any function (in practice HW). Statistical Distinguisher: linear correlation coefficient. Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = \rho(L, M_{\hat{k}})$

- Pros: exploit more information than the previous ones and is more powerful
- Cons: need assumption (Hamming weight) on the device behaviour.

CPA attack Brier et al at CHES 2004.

Attack Description Sheet/Form: CPA

Type of Leakage: no restriction. Model Function **m**: possibly any function (in practice HW). Statistical Distinguisher: linear correlation coefficient. Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = \rho(L, M_{\hat{k}})$

- Pros: exploit more information than the previous ones and is more powerful
- Cons: need assumption (Hamming weight) on the device behaviour.

MIA attack Gierlichs et al at CHES 2008.

Attack Description Sheet/Form: MIA

Type of Leakage: no restriction. Model Function **m**: any non-injective function (in practice HW). Statistical Distinguisher: mutual information (MI). Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = MI(L; M_{\hat{k}}) = entropy(L) - entropy(L \mid M_{\hat{k}})$

- Pros: theoretically able to detect any kind of dependency whatever the quality of the model if the function x → m ∘ S(x + k) is non-injective!
- Cons: need for efficient estimators of the entropy (currently less efficient than the CPA) Batina *et al*, *Journal of Cryptology 2011*.

MIA attack Gierlichs et al at CHES 2008.

Attack Description Sheet/Form: MIA

Type of Leakage: no restriction. Model Function **m**: any non-injective function (in practice HW). Statistical Distinguisher: mutual information (MI). Key Candidate Selection: the candidate the maximizes the scores.

Distinguishing value $\Delta_{\hat{k}}$: a statistical estimator of

 $\Delta_{\hat{k}} = MI(L; M_{\hat{k}}) = entropy(L) - entropy(L \mid M_{\hat{k}})$

- Pros: theoretically able to detect any kind of dependency whatever the quality of the model if the function $x \mapsto \mathbf{m} \circ S(x+k)$ is non-injective!
- Cons: need for efficient estimators of the entropy (currently less efficient than the CPA) Batina *et al*, *Journal of Cryptology 2011*.

Advanced Side Channel Attacks (DPA like attacks) Other attacks

- Stochastic attacks: See Schindler et al. at CHES 2005 or Doget et al at JCEN 2011.
 - Good alternative when classical (e.g. HW) models fail.
 - Amounts to process an Euclidean distance between the leakage values and the estimations in the regressed model.
- Kolmogorov-Smirnov Based attacks: Whitnall et al. at CARDIS 2011.
 - Good alternative to the MIA.
- PPA, EPA, VPA, etc: other attacks exist but are often very ad hoc ones with no clear advantage to the "classical" ones.
- Works comparing the attacks:
 - "How to Compare Profiled Side-Channel Attacks?" Standaert *et al, ACNS 2009.*
 - "A fair evaluation framework for comparing side-channel distinguishers" by Withnall *et al*, *JCEN 2011*.
 - "Univariate Side Channel Attacks and Leakage Modeling" by Doget *et al*, *JCEN 2011*.

Attack Description Sheet/Form: Linear Regression

Type of Leakage: no restriction. Model Function: a set of basis functions $m^{(i)}(\cdot, \cdot)$ s.t. φ can be approximated as linear combination of them. Statistical Distinguisher: Euclidean Distance (a.k.a. sum of squares difference). Key Candidate Selection: the candidate that maximizes the goodness of fit coefficient.

- Goal: recover Z or at least a good approximation of it!
- Note: ... from noisy observations *L* of *Z* and from the corresponding plaintexts *X*.
- Idea: for each \hat{k} find the best approximation \hat{Z} of Z as a linear combination of the variables $m^{(i)}(X, \hat{k})$.
 - If the distance $||Z \hat{Z}||_2$ is small $\Longrightarrow \hat{k} = k...$
 - otherwise $\hat{k} \neq k$.

- Goal: recover Z or at least a good approximation of it!
- Note: ... from noisy observations *L* of *Z* and from the corresponding plaintexts *X*.
- Idea: for each \hat{k} find the best approximation \hat{Z} of Z as a linear combination of the variables $m^{(i)}(X, \hat{k})$.
 - If the distance $||Z \hat{Z}||_2$ is small $\Longrightarrow \hat{k} = k...$
 - otherwise $\hat{k} \neq k$.

- Goal: recover Z or at least a good approximation of it!
- Note: ... from noisy observations *L* of *Z* and from the corresponding plaintexts *X*.
- Idea: for each \hat{k} find the best approximation \hat{Z} of Z as a linear combination of the variables $m^{(i)}(X, \hat{k})$.
 - If the distance $||Z \hat{Z}||_2$ is small $\Longrightarrow \hat{k} = k...$
 - otherwise $\hat{k} \neq k$.

- For each \hat{k} , define a basis $\mathcal{B}_{\hat{k}} = (\mathrm{m}^{(i)}(X, \hat{k}))_i$.
- Compute the distance between the e.v. spanned $\mathcal{B}_{\hat{k}}$ and L
- Choose the key that minimizes the distance.

- For each \hat{k} , define a basis $\mathcal{B}_{\hat{k}} = (\mathrm{m}^{(i)}(X, \hat{k}))_i$.
- Compute the distance between the e.v. spanned $\mathcal{B}_{\hat{k}}$ and L
- Choose the key that minimizes the distance.

- For each \hat{k} , define a basis $\mathcal{B}_{\hat{k}} = (\mathrm{m}^{(i)}(X, \hat{k}))_i$.
- Compute the distance between the e.v. spanned $\mathcal{B}_{\hat{k}}$ and L
- Choose the key that minimizes the distance.

Distinguishers Processing ... a partitioning description.

Combine the statistics

$$\Delta_{\hat{k}} = \sum_{i} \delta_{i} \times \mathbb{P}[M_{\hat{k}} = i]$$

Attack Efficiency

The efficiency of an SCA given a success rate β is the smallest value N such that:

 $\Pr(\text{Attack succeeds in recovering } k \text{ with } N \text{ measurements}) \geq \beta$.

Particular case: the attack involves correlation coefficient $(i.e.\Delta = \rho)$:

$$\Pr\left(\hat{
ho}_k(N) > \max_{\hat{k} \neq k} \hat{
ho}_{\hat{k}}(N)
ight) \geq eta \; .$$

where $\hat{\rho}_k(N)$ denotes the estimation of ρ_k based on N.

Attack Efficiency

The efficiency of an SCA given a success rate β is the smallest value N such that:

 $\Pr(\text{Attack succeeds in recovering } k \text{ with } N \text{ measurements}) \geq \beta$.

Particular case: the attack involves correlation coefficient $(i.e.\Delta = \rho)$:

$$\Pr\left(\hat{
ho}_k(N) > \max_{\hat{k} \neq k} \hat{
ho}_{\hat{k}}(N)
ight) \geq eta \; .$$

where $\hat{\rho}_k(N)$ denotes the estimation of ρ_k based on N.

Attack Efficiency

The efficiency of an SCA given a success rate β is the smallest value N such that:

 $\Pr(\text{Attack succeeds in recovering } k \text{ with } N \text{ measurements}) \geq \beta$.

Particular case: the attack involves correlation coefficient (*i.e.* $\Delta = \rho$):

$$\mathsf{Pr}\left(\hat{
ho}_k({\sf N}) > \max_{\hat{k}
eq k} \hat{
ho}_{\hat{k}}({\sf N})
ight) \geq eta \; .$$

where $\hat{\rho}_k(N)$ denotes the estimation of ρ_k based on N.

• Fisher: when $\hat{\rho}_{\hat{k}}(N)$ is computed between samples that have a joint normal distribution, $Z_{N,\hat{k}} = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}_k(N)}{1 - \hat{\rho}_{\hat{k}}(N)} \right)$ has a normal distribution with parameters

$$\mathbf{E}(Z_{N,\hat{k}}) = \frac{1}{2} \ln \left(\frac{1 + \rho_k}{1 - \rho_{\hat{k}}} \right)$$
 and $\operatorname{Var}(Z_{N,\hat{k}}) = (N - 3)^{-2}$.

• [Mangard at CT-RSA 2004] So, $Pr(\hat{\rho}_k(N) > \hat{\rho}_k(N)) = \beta$ implies:

$$N=3+8\left(rac{\Phi^{-1}(eta)}{\ln\left(rac{1+
ho_k}{1-
ho_k}
ight)}
ight)^2 \; ,$$

where Φ denotes the pdf of $\mathcal{N}(0,1)$.

• Fisher: when $\hat{\rho}_{\hat{k}}(N)$ is computed between samples that have a joint normal distribution, $Z_{N,\hat{k}} = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}_k(N)}{1 - \hat{\rho}_{\hat{k}}(N)} \right)$ has a normal distribution with parameters

$$\mathbf{E}(Z_{N,\hat{k}}) = \frac{1}{2} \ln \left(\frac{1+\rho_k}{1-\rho_{\hat{k}}} \right)$$
 and $\operatorname{Var}(Z_{N,\hat{k}}) = (N-3)^{-2}$.

• [Mangard at CT-RSA 2004] So, $Pr(\hat{\rho}_k(N) > \hat{\rho}_k(N)) = \beta$ implies:

$$N = 3 + 8 \left(rac{\Phi^{-1}(eta)}{\ln\left(rac{1+
ho_k}{1-
ho_k}
ight)}
ight)^2 \; ,$$

where Φ denotes the pdf of $\mathcal{N}(0,1)$.

• Fisher: when $\hat{\rho}_{\hat{k}}(N)$ is computed between samples that have a joint normal distribution, $Z_{N,\hat{k}} = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}_k(N)}{1 - \hat{\rho}_{\hat{k}}(N)} \right)$ has a normal distribution with parameters

$$\mathbf{E}(Z_{N,\hat{k}}) = \frac{1}{2} \ln \left(\frac{1+\rho_k}{1-\rho_{\hat{k}}} \right)$$
 and $\operatorname{Var}(Z_{N,\hat{k}}) = (N-3)^{-2}$.

• [Mangard at CT-RSA 2004] Assuming $\rho_{\hat{k}}(N) = 0$ we get:

$$N pprox 8 imes \Phi^{-1}(eta)^2 imes
ho_k^{-2} \; ,$$

since $\ln(1+x) \approx x$ if |x| < 1.

• Let us define the SNR by:

$$SNR = \frac{Var[L] - E[Var[L \mid Z]]}{E[Var[L \mid Z]]} = \frac{Var[\varphi(Z)]}{E[Var[L \mid Z]]}$$

Note: can be computed without knowing φ ! • [Mangard at CT-RSA 2004] If SNR \ll 1, we have

$$\rho_{\hat{k}}(N) = \mathsf{SNR} \times \rho_{\hat{k}}^{\mathsf{0}}(N)$$

where $\rho_{\hat{k}}^0(N)$ denotes the correl. when there is no stoch. noise. • Consequently,

$$N \sim rac{1}{SNR}$$

SNR = 0.01	\rightarrow	around 100 traces	\rightarrow	few seconds
SNR = 0.001	\rightarrow	around 1000 traces	\rightarrow	less than $1/_4$ hour
SNR = 0.0001	\rightarrow	around 10^5 traces	\rightarrow	several hours
$SNR = 10^{-6}$	\rightarrow	several millions of traces	\rightarrow	several days

• Let us define the SNR by:

$$\mathsf{SNR} = \frac{\mathsf{Var}[\mathsf{L}] - \mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]} = \frac{\mathsf{Var}[\varphi(Z)]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}$$

Note: can be computed without knowing $\varphi!$

 $\bullet~$ [Mangard at CT-RSA 2004] If SNR \ll 1, we have

$$\rho_{\hat{k}}(N) = \mathsf{SNR} \times \rho_{\hat{k}}^{\mathsf{0}}(N)$$

where $\rho_k^0(N)$ denotes the correl. when there is no stoch. noise. • Consequently,

$$N \sim rac{1}{SNR}$$

SNR = 0.01	\rightarrow	around 100 traces	\rightarrow	few seconds
SNR = 0.001	\rightarrow	around 1000 traces	\rightarrow	less than $1/_4$ hour
SNR = 0.0001	\rightarrow	around 10^5 traces	\rightarrow	several hours
$SNR = 10^{-6}$	\rightarrow	several millions of traces	\rightarrow	several days

• Let us define the SNR by:

$$\mathsf{SNR} = \frac{\mathsf{Var}[\mathsf{L}] - \mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]} = \frac{\mathsf{Var}[\varphi(Z)]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}$$

Note: can be computed without knowing $\varphi!$

• [Mangard at CT-RSA 2004] If SNR \ll 1, we have

$$\rho_{\hat{k}}(N) = \mathsf{SNR} \times \rho_{\hat{k}}^0(N)$$

where $\rho_{\hat{k}}^{0}(N)$ denotes the correl. when there is no stoch. noise. • Consequently,

SNR = 0.01	\rightarrow	around 100 traces	\rightarrow	few seconds
SNR = 0.001	\rightarrow	around 1000 traces	\rightarrow	less than $1/4$
VR = 0.0001	\rightarrow	around 10^5 traces	\rightarrow	several hours
$SNR = 10^{-6}$	\rightarrow	several millions of traces	\rightarrow	several days

• Let us define the SNR by:

$$\mathsf{SNR} = \frac{\mathsf{Var}[\mathsf{L}] - \mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]} = \frac{\mathsf{Var}[\varphi(Z)]}{\mathsf{E}[\mathsf{Var}[\mathsf{L} \mid Z]]}$$

Note: can be computed without knowing $\varphi!$

 $\bullet~[{\rm Mangard~at~CT}{-}{\rm RSA~2004}]$ If SNR \ll 1, we have

$$\rho_{\hat{k}}(N) = \mathsf{SNR} \times \rho_{\hat{k}}^0(N)$$

where $\rho_{\hat{k}}^0(N)$ denotes the correl. when there is no stoch. noise. • Consequently,

$$N \sim \frac{1}{SNR}$$

SNR = 0.01	\rightarrow	around 100 traces	\rightarrow	few seconds
SNR = 0.001	\rightarrow	around 1000 traces	\rightarrow	less than $1/_4$ hour
SNR = 0.0001	\rightarrow	around 10^5 traces	\rightarrow	several hours
$SNR = 10^{-6}$	\rightarrow	several millions of traces	\rightarrow	several days

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

- Core Idea: relax the assumption $\rho_{\hat{k}}(N) = 0$ for any $\hat{k} \neq 0$.
- Note: this assumption contradicts the ghost Peaks phenomenon ... which is however observed in practice!
- Recent works on this subject: Rivain, SAC 2008, Fei, Luo, Ding, CHES 2012, Thillard, Prouff, Roche, CHES 2013.

Advanced Side Channel Attacks (DPA like attacks) Efficiency of Other Attacks (MIA, Templates, etc.)

• When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.

• \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.

- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

 $\Delta(L,g(X,k)) < arepsilon$,

where X is some plaintext part and ε is a security parameter.
• When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.

• \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.

- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

 $\Delta(L,g(X,k)) < arepsilon$,

• When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.

• \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.

- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

 $\Delta(L,g(X,k)) < arepsilon$,

- When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.
 - \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.
- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

 $\Delta(L,g(X,k)) < arepsilon$,

- When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.
 - ⇒ Efficiency formula N ≈ 8 × Φ⁻¹(β)² × Δ_k⁻² stays true for the corresponding distinguishers.
- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

 $\Delta(L,g(X,k))<arepsilon$,

- When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.
 - ⇒ Efficiency formula N ≈ 8 × Φ⁻¹(β)² × Δ_k⁻² stays true for the corresponding distinguishers.
- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$\Delta(L,g(X,k)) < arepsilon$,

• When provided with the same *a priori* information about the leakage, CPA, MIA, DPA and Gaussian template attacks are asymptotically equivalent Mangard *et al*, *IET Information Security* 2011.

• \implies Efficiency formula $N \approx 8 \times \Phi^{-1}(\beta)^2 \times \Delta_k^{-2}$ stays true for the corresponding distinguishers.

- Note: for Template attacks, the cost of the on-line phase may be constant but the cost of the off-line templates building will be linear in *SNR*⁻¹.
- In conclusion, adding security consists in finding efficient way(s) to decrease Δ_k as much as possible.
 - *i.e.*specify the algorithm implementation such that for any instantaneous leakage *L*, for any key part *k* and for any function *g*:

$$\Delta(L,g(X,k)) < \varepsilon$$
,

Plan

- Advanced (Univ.) Attacks
 - Introduction in the context of AES
 - Attacks Description (Univ. Case)
 - Modeling
 - Distinguishers
 - Efficiency
- 2 Introduction and General Principles
 - Shuffling Method
 - Masking Method
 - Attacks Against Countermeasures: Core Ideas
 - Attacks Against Masking
 - Attacks Against Shuffling
- 3 SCA Example: Attack Against RSA Key Generation
 - Context
 - A new attack
 - Limitations and Experimental Results
 - Conclusions an Improvements

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

E. Prouff Side Channel Attacks

- First Order Masking: $M_0 = Z \oplus M_1$
- \implies Second Order SCA:

- Masking of order $d: M_0 = Z \oplus M_1 \oplus \cdots \oplus M_d$
- Attack of order d + 1:

- First Order Masking: $M_0 = Z \oplus M_1$
- \implies Second Order SCA:

- Masking of order $d: M_0 = Z \oplus M_1 \oplus \cdots \oplus M_d$
- Attack of order d + 1:

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

- *d*th-order Masking: HO-SCA
 - [Messerges in his PhD Thesis]
 - Improved latter in Prouff et al at IEEE TC 2009 or in Gierlichs et al at Journal of Cryptology 2011
- *t*th-order Shuffling: Integrated Attacks
 - [Clavier et al at CHES 2000]
- (*d*th-order Masking)-and-(*t*th-order shuffling): Integrated HO-SCA
 - [Tillich et al at ACNS 2007]
 - Improved in [Rivain et al at CHES 2009]

All the previous SCA follow the same outlines.

- Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **(2)** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- 1 Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **(2)** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **(2)** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

(b) Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- **(4)** For every hypothesis $M_{\hat{k}}$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(M_{\hat{k}}, f((L_i)_i))| .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- (2) Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- **(4)** For every hypothesis $M_{\hat{k}}$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(M_{\hat{k}}, f((L_i)_i))| \quad .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- **(4)** For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

$\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M+\hat{k})], f((L_i)_i))| .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

Example: if Z = S(M + k) and $M_{\hat{k}} = HW[S(M + \hat{k})]$, we have ... Note: if the mutual information is used instead of the correlation coefficient, there is not need for a pre-processing function f. In other cases, the single difference is the function f.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M + \hat{k})], f((L_i)_i))| .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

All the previous SCA follow the same outlines.

- **()** Input: set of observations for the signals $(L_i)_i$ related to a sensitive datum Z
- **Q** Choose a statistical distintguisher Δ and a pre-processing function f
- **(3)** From the observations, estimate $f(L_i)$
- 4 For every hypothesis $HW[S(M + \hat{k})]$ on Z, estimate

 $\Delta_{\hat{k}} = |\Delta(\mathsf{HW}[S(M + \hat{k})], f((L_i)_i))| .$

() Select the hypothesis that maximizes the estimation of $\Delta_{\hat{k}}$.

HO-SCA against Higher Order Masking Illustration with Δ being Pearson' Correlation Coefficient

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{ extsf{cst}_1}{\left(\sqrt{1+ extsf{cst}_2\cdot \sigma^2}
ight)^{d+1}} \; .$$

It is denoted by $\rho(d, \sigma)$.

HO-SCA against Higher Order Masking Illustration with Δ being Pearson' Correlation Coefficient

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{ extsf{cst}_1}{\left(\sqrt{1+ extsf{cst}_2\cdot \sigma^2}
ight)^{d+1}} \; .$$

It is denoted by $\rho(d, \sigma)$.
HO-SCA against Higher Order Masking Illustration with Δ being Pearson' Correlation Coefficient

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{ extsf{cst}_1}{\left(\sqrt{1+ extsf{cst}_2\cdot \sigma^2}
ight)^{d+1}} \; .$$

It is denoted by $\rho(d, \sigma)$.

HO-SCA against Higher Order Masking Illustration with Δ being Pearson' Correlation Coefficient

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{\mathit{cst}_1}{\left(\sqrt{1+\mathit{cst}_2\cdot \sigma^2}
ight)^{d+1}} \; .$$

It is denoted by $\rho(d, \sigma)$.

HO-SCA against Higher Order Masking Illustration with Δ being Pearson' Correlation Coefficient

Context: sensitive variable Z split into d + 1 shares $M_0, ..., M_d$ Notation: L_i is the signal related to M_i .

Function *f* is a normalized product:

$$f(L_0,\cdots,L_d)=\prod_{i=0}^d (L_i-\mathbf{E}(L_i)) \ .$$

In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{cst_1}{\left(\sqrt{1+cst_2\cdot\sigma^2}
ight)^{d+1}} \; .$$

It is denoted by $\rho(d, \sigma)$.

Integrated SCA Against Shuffling Illustration with Δ being Pearson' Correlation Coefficient

Context: the signal S containing information about Z is randomly spread over t different signals $L_1, ..., L_t$.

Function *f* is an Integrated signal:

$$f(L_1, \cdots, L_t) = L_1 + L_2 + \dots + L_t$$

$$\rho_k = \frac{1}{\sqrt{t}\sqrt{1+\textit{cst}_2\cdot \sigma^2}} \; .$$

Integrated SCA Against Shuffling Illustration with Δ being Pearson' Correlation Coefficient

Context: the signal S containing information about Z is randomly spread over t different signals $L_1, ..., L_t$.

Function *f* is an Integrated signal:

$$f(L_1, \cdots, L_t) = L_1 + L_2 + \dots + L_t$$

$$\rho_k = \frac{1}{\sqrt{t}\sqrt{1+\textit{cst}_2\cdot \sigma^2}} \; .$$

Context: the signal S containing information about Z is randomly spread over t different signals $L_1, ..., L_t$.

Function *f* is an Integrated signal:

$$f(L_1, \cdots, L_t) = L_1 + L_2 + \dots + L_t$$

$$\rho_k = \frac{1}{\sqrt{t}\sqrt{1+\textit{cst}_2\cdot \sigma^2}} \; .$$

Context: the signal S containing information about Z is randomly spread over t different signals $L_1, ..., L_t$.

Function *f* is an Integrated signal:

$$f(L_1, \cdots, L_t) = L_1 + L_2 + \dots + L_t$$

$$\rho_k = \frac{1}{\sqrt{t}\sqrt{1+cst_2\cdot\sigma^2}} \; .$$

Context: X is split into d + 1 shares M_0 , M_1 , ..., M_d whose manipulations are randomly spread over t different times.

Function *f* is a Combined-and-Integrated Signal:

$$f((L_i)_i) = \sum_{(i_0,...,i_d) \in I} \prod_{j=0}^d (L_{i_j} - \mathbf{E}(L_{i_j}))$$
 .

Note: the sum always contains the term $\prod_{i=0}^{d} (M_i - \mathbf{E}(M_i))$. In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{1}{\sqrt{\#I}}
ho(d,\sigma) \; \; .$$

Context: X is split into d + 1 shares M_0 , M_1 , ..., M_d whose manipulations are randomly spread over t different times.

Function *f* is a Combined-and-Integrated Signal:

$$f((L_i)_i) = \sum_{(i_0,...,i_d) \in I} \prod_{j=0}^d (L_{i_j} - \mathbf{E}(L_{i_j}))$$
 .

Note: the sum always contains the term $\prod_{i=0}^{d} (M_i - \mathbf{E}(M_i))$. In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{1}{\sqrt{\#I}}
ho(d,\sigma) \; \; .$$

Context: X is split into d + 1 shares M_0 , M_1 , ..., M_d whose manipulations are randomly spread over t different times.

Function *f* is a Combined-and-Integrated Signal:

$$f((L_i)_i) = \sum_{(i_0,...,i_d) \in I} \prod_{j=0}^d (L_{i_j} - \mathbf{E}(L_{i_j}))$$
 .

Note: the sum always contains the term $\prod_{i=0}^{d} (M_i - E(M_i))$. In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{1}{\sqrt{\#I}}
ho(d,\sigma) \; \; .$$

Context: X is split into d + 1 shares M_0 , M_1 , ..., M_d whose manipulations are randomly spread over t different times.

Function *f* is a Combined-and-Integrated Signal:

$$f((L_i)_i) = \sum_{(i_0,...,i_d) \in I} \prod_{j=0}^d (L_{i_j} - \mathbf{E}(L_{i_j}))$$
.

Note: the sum always contains the term $\prod_{i=0}^{d} (M_i - \mathbf{E}(M_i))$. In the Hamming Weight Model, the efficiency satisfies:

$$ho_k = rac{1}{\sqrt{\#I}}
ho(d,\sigma) \; .$$

Plan

- Advanced (Univ.) Attacks
 - Introduction in the context of AES
 - Attacks Description (Univ. Case)
 - Modeling
 - Distinguishers
 - Efficiency
- Introduction and General Principles
 - Shuffling Method
 - Masking Method
 - Attacks Against Countermeasures: Core Ideas
 - Attacks Against Masking
 - Attacks Against Shuffling
- 3 SCA Example: Attack Against RSA Key Generation
 - Context
 - A new attack
 - Limitations and Experimental Results
 - Conclusions an Improvements

RSA Key Generation

RSA keys

- 2 primes: (*p*, *q*) (between 512 and 4092 bits)
- *N* = *pq*, *e*
- $d = e^{-1} \mod \phi(N)$

RSA strong keys

- 2 primes: (*p*, *q*) (between 512 and 4092 bits)
- p-1, p+1, q-1 and q+1 possess a large factor (100 bits)
- *N* = *pq*, *e*
- $d = e^{-1} \mod \phi(N)$

For *r* large, the r^{th} prime number is about $r \log r$ \hookrightarrow by randomly picking *r* between *x* and x/2

 $\Pr(r \text{ is prime}) \simeq 1/(\log x)$

Incremental Search

```
() pick a random odd seed v \in [x/2, x]
```

2

() verify that it is a prime with good probability

If yes, return.

() otherwise increase v by 2 and go back to step 2.

For *r* large, the r^{th} prime number is about $r \log r$ \hookrightarrow by randomly picking *r* between *x* and x/2

 $\Pr(r \text{ is prime}) \simeq 1/(\log x)$

Incremental Search

```
() pick a random odd seed v \in [x/2, x]
```

0

(3) verify that it is a prime with good probability

If yes, return.

() otherwise increase v by 2 and go back to step 2.

For *r* large, the r^{th} prime number is about $r \log r$ \hookrightarrow by randomly picking *r* between *x* and x/2

 $\Pr(r \text{ is prime}) \simeq 1/(\log x)$

Incremental Search with sieving process

- **()** pick a random odd seed $v \in [x/2, x]$
- **2** test the divisibility by small primes (< 256)
- **()** verify that it is a prime with good probability
- () if yes, return.
- \bigcirc otherwise increase v by 2 and go back to step 2.

For *r* large, the r^{th} prime number is about $r \log r$ \hookrightarrow by randomly picking *r* between *x* and x/2

 $\Pr(r \text{ is prime}) \simeq 1/(\log x)$

Incremental Search with sieving process

- **()** pick a random odd seed $v \in [x/2, x]$
- 2 test the divisibility by small primes (< 256)
- **()** verify that it is a prime with good probability
- If yes, return.
- \bigcirc otherwise increase v by 2 and go back to step 2.

Primes Generation by Incremental search

```
Input : A bit-length \ell, an even constant \tau, the set S = \{s_0, \dots, s_{52}\} of all odd primes lower than 256 (stored
           in ROM), a number t of Miller-Rabin tests to perform
   Output: A probable prime p
  while (v mod s \neq 0) and (i < 53) do
6
  if (i \neq 53) then
        goto Step 3;
9
      while (Miller-Rabin() = ok) and (i < t) do
  if (i = t) and (Lucas() = ok) then
        goto Step 3;
```

Primes Generation by Incremental search

```
Input : A bit-length \ell, an even constant \tau, the set S = \{s_0, \dots, s_{52}\} of all odd primes lower than 256 (stored
            in ROM), a number t of Miller-Rabin tests to perform
   Output: A probable prime p
   /* Generate a seed
                                                                                                                           */

    randomly generate an odd ℓ-bit integer v<sub>0</sub>;

   /* Prime Sieve
                                                                                                                           */
2 v \leftarrow v_0; s \leftarrow s_0; j = 0;
3 while (v \mod s \neq 0) and (i < 53) do
      i = i + 1;
4
5
      s \leftarrow s_i;
  if (i \neq 53) then
6
7
         v = v + \tau;
8
         goto Step 3;
      while (Miller-Rabin() = ok) and (i < t) do
  if (i = t) and (Lucas() = ok) then
        goto Step 3;
```

Primes Generation by Incremental search

```
Input : A bit-length \ell, an even constant \tau, the set S = \{s_0, \dots, s_{52}\} of all odd primes lower than 256 (stored
             in ROM), a number t of Miller-Rabin tests to perform
    Output: A probable prime p
    /* Generate a seed
                                                                                                                           */

    randomly generate an odd ℓ-bit integer v<sub>0</sub>;

    /* Prime Sieve
                                                                                                                           *
2 v \leftarrow v_0; s \leftarrow s_0; j = 0;
3 while (v \mod s \neq 0) and (i < 53) do
         i = j + 1;
 4
 5
        s \leftarrow s_i;
   if (i \neq 53) then
6
          v = v + \tau;
7
8
          goto Step 3:
    /* Probabilistic primality tests
                                                                                                                           */
    else
Q
          i = 0:
10
          /* Process t Miller-Rabin's tests (stop if one fails)
                                                                                                                           *,
          while (Miller-Rabin() = ok) and (i < t) do
11
12
                 i = i + 1:
    /* Process 1 Lucas' test<sup>a</sup>
                                                                                                                           */
   if (i = t) and (Lucas() = ok) then
13
          return v;
14
    else
15
16
           v = v + \tau;
17
          goto Step 3;
```

SPA on key generations

[Finke et al 09]

- Attacker model: knows when the sieving is stopping for a candidate (*i.e.*when $v_0 + \tau i = 0 \mod s_j$), where
 - *i* is the index of the tested candidate: assumed to be known.
 - s_j is the j^{th} sieving element: assumed to be known.
- From $p = v_0 + \tau n$ (with *n* the number of tested candidates), build the equations $p \tau(n i) = 0 \mod s_j$, where
 - *n* is the final number of tested candidates: assumed to be known.
- Using the CRT, part of p = v₀ + τn may be retrieved (including p mod ∏_i s_j)
- Finish using Coppersmith factorisation method \hookrightarrow need at least $\frac{\log p}{2}$ bits

SPA on key generations

[Finke et al 09]

- Attacker model: knows when the sieving is stopping for a candidate (*i.e.*when $v_0 + \tau i = 0 \mod s_j$), where
 - *i* is the index of the tested candidate: assumed to be known.
 - s_j is the j^{th} sieving element: assumed to be known.
- From $p = v_0 + \tau n$ (with *n* the number of tested candidates), build the equations $p \tau(n i) = 0 \mod s_i$, where
 - *n* is the final number of tested candidates: assumed to be known.
- Using the CRT, part of $p = v_0 + \tau n$ may be retrieved (including $p \mod \prod_i s_j$)
- Finish using Coppersmith factorisation method \hookrightarrow need at least $\frac{\log p}{2}$ bits

... there exist a very convenient countermeasure

Prime Sieve

```
/* Prime Sieve for v_0
                                                                                         */
1 for i = 0 to 52 do
       R[i] \leftarrow v_0 \mod s_i; /* costly modular reduction over \ell-bit integers */
2
3
  /* Prime Sieve for v_i with i > 0
                                                                                         *
 v \leftarrow v_0:
4
  while (R does not contain a null remainder) do
       v = v + \tau;
      for i = 0 to 52 do
           /* efficient modular reduction over 8-bit integers
                                                                                         */
          R[j] \leftarrow R[j] + \tau \mod s_i;
```

Algorithm 1: Improved Prime Sieve

Prime Sieve

```
/* Prime Sieve for v_0
                                                                                          */
  for i = 0 to 52 do
1
       R[i] \leftarrow v_0 \mod s_i; /* costly modular reduction over \ell-bit integers */
2
3
  /* Prime Sieve for v; with i > 0
                                                                                          */
  v \leftarrow v_0:
4
5
  while (R does not contain a null remainder) do
       v = v + \tau;
6
       for i = 0 to 52 do
7
           /* efficient modular reduction over 8-bit integers
                                                                                          */
           R[j] \leftarrow R[j] + \tau \mod s_i;
8
```

Algorithm 2: Improved Prime Sieve

Prime Sieve

Algorithm 3: Improved Prime Sieve

Differential SCA on the balanced prime sieve

For every $j \le \lambda$ and every $i \le n$, the attacker may observe the manipulation of $v_0 + \tau i \mod s_j$ by the device. Then, he can try to recover v_0 which is the sole unknown value.

Focusing on $v \mod s_i$

With a small hypothesis on $v_0 \mod s_j$, for every $i \le n$ one can guess

 $v_0 + \tau i \mod s_j$.

 \hookrightarrow select a leakage model and apply a DPA, CPA, MIA, ... to test the hypotheses \hookrightarrow (hopefully) leads to the recovery of $v_0 \mod s_i$.

Finish like [Finke et al 09]

Differential SCA on the balanced prime sieve

For every $j \le \lambda$ and every $i \le n$, the attacker may observe the manipulation of $v_0 + \tau i \mod s_j$ by the device. Then, he can try to recover v_0 which is the sole unknown value.

Focusing on $v \mod s_i$

With a small hypothesis on $v_0 \mod s_j$, for every $i \le n$ one can guess

 $v_0 + \tau i \mod s_j$.

 \hookrightarrow select a leakage model and apply a DPA, CPA, MIA, ... to test the hypotheses \hookrightarrow (hopefully) leads to the recovery of $v_0 \mod s_i$.

Finish like [Finke et al 09]

- Size of *n*?
- Success Rate of this attack with common leakage model?
- Limitations in practice?

Simulation Results

Figure: Cumulative distribution function of *n* for different prime bit-lengths ℓ

Simulation Results

E. Prouff Side Channel Attacks

Simulation Results

Traces acquisition in practice

Parameters

- 512 primes generations
- $\bullet\,$ 8-bit CPU running at $\sim\,$ 50 MHz
- sieving size: 53
- primality tests: 10 Miller-Rabins

modular arithmetic co-processor

In a worst case scenario the generation can take 2.5s

Acquisition Oscilloscope

- 250 MSamples of memory
- 100 MSamples per seconds

Traces acquisition in practice

Figure: Electro-magnetic radiations measured during a prime number generation computation on a commercial smartcard. Pattern 1 corresponds to the initial costly prime sieve, whereas patterns 2 to 28 correspond to Miller-Rabin tests.

Results on a toy example

- focus on the sieving process on a 8-bit CPU
- varying number *n* of iterations

(a) Success rates for each prime (b) Success rates for recovering x sieve elements (over 200 attack ex- bits of information on the generperiments) ated prime

Attack Improvements

Find the correct bits of p

- Key Enumeration Algorithms [Veyrat et al 12]
- Coherency check using RSA equation N = pq

Change the standards

Existing Solutions

• Fouque-Tibouchi 2011

Inject randomness at each iteration

• Clavier et al 2012

Efficient provable prime generation